(6x^5 + 12x) / (-2x^-3) =[ (6x^5 + 12x) (x^3) ] / (-2) =(6x^8 + 12x^4) / (-2)=(3x^8 + 6x^4) =(3x^4)[ (x^4) + 2 ]
2x + 6x + 4x = 12x
8x-3+6x-1 = 12x+614x-4 = 12x+614x-12x = 6+42x = 10x = 5
12x-41=6x+1 add 41 to both sides 12x=6x+42 subtract 6x from both sides 6x=42 divide both sides by 8 x=7
6x+7 = -56x = -12x = -2
(6x^5 + 12x) / (-2x^-3) =[ (6x^5 + 12x) (x^3) ] / (-2) =(6x^8 + 12x^4) / (-2)=(3x^8 + 6x^4) =(3x^4)[ (x^4) + 2 ]
10+12x=-14 -14-10=12x 12x=-24 x=-2
6x + 12x + 2x = 80 20x = 80 x = 4
2x + 6x + 4x = 12x
8x-3+6x-1 = 12x+614x-4 = 12x+614x-12x = 6+42x = 10x = 5
12x-41=6x+1 add 41 to both sides 12x=6x+42 subtract 6x from both sides 6x=42 divide both sides by 8 x=7
6x+7 = -56x = -12x = -2
7
6x³ +12x + 18 = 6(x + 1)(x² - x + 3)
1+6x+6x+8 1+ 12x +8 12x + 9 = 21 + x
Fill in the missing powers of x in the dividend by having a coefficient of zero (0); then use long division: _________________ 6x³ - 3x² - 2x + 1 ________--------------------------------- 2x + 1 | 12x⁴ + 0x³ - 7x² + 0x + 1 _________ 12x⁴ + 6x³ _________ ------------- _______________ - 6x³ - 7x² _______________ - 6x³ - 3x² _______________ ------------- ____________________ - 4x² + 0x ____________________ - 4x² - 2x ____________________ ------------ ____________________________ 2x + 1 ____________________________ 2x + 1 ____________________________ -------- __________________________________0 ____________________________ ===== → (12x⁴ - 7x² + 1) ÷ (2x + 1) = 6x³ - 3x² - 2x + 1 with no remainder.
2(3x^2 + 6x + 2)