There are 31 ways:1p × 211p × 19 + 2p × 11p × 17 + 2p × 21p × 16 + 5p × 11p × 15 + 2p × 31p × 14 + 2p × 1 + 5p × 11p × 13 + 2p × 41p × 12 + 2p × 2 + 5p × 11p × 11 + 2p × 51p × 11 + 5p × 21p × 10 + 2p × 3 + 5p × 11p × 9 + 2p × 61p × 9 + 2p × 1 + 5p × 21p × 8 + 2p × 4 + 5p1p × 7 + 2p × 71p × 7 + 2p × 2 + 5p × 21p × 6 + 2p × 5 + 5p1p × 6 + 5p × 31p × 5 + 2p × 81p × 5 + 2p × 3 + 5p × 21p × 4 + 2p × 6 + 5p × 11p × 4 + 2p × 1 + 5p × 31p × 3 + 2p × 91p × 3 + 2p × 4 + 5p × 21p × 2 + 2p × 7 + 5p × 11p × 2 + 2p × 2 + 5p × 31p × 1 + 2p × 101p × 1 + 2p × 5 + 5p × 21p × 1 + 5p × 42p × 8 + 5p × 12p × 3 + 5p × 3
Do you mean: r = (4q-5p)/9? If so then: p = (9r-4q)/-5
29 Ways: 20(1p) 18(1p),1(2p) 16(1p),2(2p) 14(1p),3(2p) 12(1p),4(2p) 10(1p),5(2p) 8(1p),6(2p) 6(1p),7(2p) 4(1p),8(2p) 2(1p),9(2p) 10(2p) 4(5p) 3(5p),2(2p),1(1p) 3(5p),1(2p),3(1p) 3(5p),5(1p) 2(5p),5(2p) 2(5p),4(2p),2(1p) 2(5p),3(2p),4(1p) 2(5p),2(2p),6(1p) 2(5p),1(2p),8(1p) 2(5p),10(1p) 1(5p),7(2p),1(1p) 1(5p),6(2p),3(1p) 1(5p),5(2p),5(1p) 1(5p),4(2p),7(1p) 1(5p),3(2p),9(1p) 1(5p),2(2p),11(1p) 1(5p),1(2p),13(1p) 1(5p),15(1p)
p=-15
9
5p-14 = 8p +4 take the 14 to the other side and the 8p to the other side so 5p-8p = 4 +14 -3p = 18 p = -18/3
9
8 + 5p + 7q + 9 + 3p Reordering: 8 + 9 + 5p + 3p + 7q Combine like terms: 17 + 8p + 7q
There are 31 ways:1p × 211p × 19 + 2p × 11p × 17 + 2p × 21p × 16 + 5p × 11p × 15 + 2p × 31p × 14 + 2p × 1 + 5p × 11p × 13 + 2p × 41p × 12 + 2p × 2 + 5p × 11p × 11 + 2p × 51p × 11 + 5p × 21p × 10 + 2p × 3 + 5p × 11p × 9 + 2p × 61p × 9 + 2p × 1 + 5p × 21p × 8 + 2p × 4 + 5p1p × 7 + 2p × 71p × 7 + 2p × 2 + 5p × 21p × 6 + 2p × 5 + 5p1p × 6 + 5p × 31p × 5 + 2p × 81p × 5 + 2p × 3 + 5p × 21p × 4 + 2p × 6 + 5p × 11p × 4 + 2p × 1 + 5p × 31p × 3 + 2p × 91p × 3 + 2p × 4 + 5p × 21p × 2 + 2p × 7 + 5p × 11p × 2 + 2p × 2 + 5p × 31p × 1 + 2p × 101p × 1 + 2p × 5 + 5p × 21p × 1 + 5p × 42p × 8 + 5p × 12p × 3 + 5p × 3
Do you mean: r = (4q-5p)/9? If so then: p = (9r-4q)/-5
29 Ways: 20(1p) 18(1p),1(2p) 16(1p),2(2p) 14(1p),3(2p) 12(1p),4(2p) 10(1p),5(2p) 8(1p),6(2p) 6(1p),7(2p) 4(1p),8(2p) 2(1p),9(2p) 10(2p) 4(5p) 3(5p),2(2p),1(1p) 3(5p),1(2p),3(1p) 3(5p),5(1p) 2(5p),5(2p) 2(5p),4(2p),2(1p) 2(5p),3(2p),4(1p) 2(5p),2(2p),6(1p) 2(5p),1(2p),8(1p) 2(5p),10(1p) 1(5p),7(2p),1(1p) 1(5p),6(2p),3(1p) 1(5p),5(2p),5(1p) 1(5p),4(2p),7(1p) 1(5p),3(2p),9(1p) 1(5p),2(2p),11(1p) 1(5p),1(2p),13(1p) 1(5p),15(1p)
p=-15
It can be done in 162 ways, viz: 1 × 20p, 1 × 10p, 1 × 5p 1 × 20p, 1 × 10p, 2 × 2p, 1 × 1p 1 × 20p, 1 × 10p, 1 × 2p, 3 × 1p 1 × 20p, 1 × 10p, 5 × 1p 1 × 20p, 3 × 5p 1 × 20p, 2 × 5p, 2 × 2p, 1 × 1p 1 × 20p, 2 × 5p, 1 × 2p, 3 × 1p 1 × 20p, 2 × 5p, 5 × 1p 1 × 20p, 1 × 5p, 5 × 2p 1 × 20p, 1 × 5p, 4 × 2p, 2 × 1p 1 × 20p, 1 × 5p, 3 × 2p, 4 × 1p 1 × 20p, 1 × 5p, 2 × 2p, 6 × 1p 1 × 20p, 1 × 5p, 1 × 2p, 8 × 1p 1 × 20p, 1 × 5p, 10 × 1p 1 × 20p, 7 × 2p, 1 × 1p 1 × 20p, 6 × 2p, 3 × 1p 1 × 20p, 5 × 2p, 5 × 1p 1 × 20p, 4 × 2p, 7 × 1p 1 × 20p, 3 × 2p, 9 × 1p 1 × 20p, 2 × 2p, 11 × 1p 1 × 20p, 1 × 2p, 13 × 1p 1 × 20p, 15 × 1p 3 × 10p, 1 × 5p 3 × 10p, 2 × 2p, 1 × 1p 3 × 10p, 1 × 2p, 3 × 1p 3 × 10p, 5 × 1p 2 × 10p, 3 × 5p 2 × 10p, 2 × 5p, 2 × 2p, 1 × 1p 2 × 10p, 2 × 5p, 1 × 2p, 3 × 1p 2 × 10p, 2 × 5p, 5 × 1p 2 × 10p, 1 × 5p, 5 × 2p 2 × 10p, 1 × 5p, 4 × 2p, 2 × 1p 2 × 10p, 1 × 5p, 3 × 2p, 4 × 1p 2 × 10p, 1 × 5p, 2 × 2p, 6 × 1p 2 × 10p, 1 × 5p, 1 × 2p, 8 × 1p 2 × 10p, 1 × 5p, 10 × 1p 2 × 10p, 7 × 2p, 1 × 1p 2 × 10p, 6 × 2p, 3 × 1p 2 × 10p, 5 × 2p, 5 × 1p 2 × 10p, 4 × 2p, 7 × 1p 2 × 10p, 3 × 2p, 9 × 1p 2 × 10p, 2 × 2p, 11 × 1p 2 × 10p, 1 × 2p, 13 × 1p 2 × 10p, 15 × 1p 1 × 10p, 5 × 5p 1 × 10p, 4 × 5p, 2 × 2p, 1 × 1p 1 × 10p, 4 × 5p, 1 × 2p, 3 × 1p 1 × 10p, 4 × 5p, 5 × 1p 1 × 10p, 3 × 5p, 5 × 2p 1 × 10p, 3 × 5p, 4 × 2p, 2 × 1p 1 × 10p, 3 × 5p, 3 × 2p, 4 × 1p 1 × 10p, 3 × 5p, 2 × 2p, 6 × 1p 1 × 10p, 3 × 5p, 1 × 2p, 8 × 1p 1 × 10p, 3 × 5p, 10 × 1p 1 × 10p, 2 × 5p, 7 × 2p, 1 × 1p 1 × 10p, 2 × 5p, 6 × 2p, 3 × 1p 1 × 10p, 2 × 5p, 5 × 2p, 5 × 1p 1 × 10p, 2 × 5p, 4 × 2p, 7 × 1p 1 × 10p, 2 × 5p, 3 × 2p, 9 × 1p 1 × 10p, 2 × 5p, 2 × 2p, 11 × 1p 1 × 10p, 2 × 5p, 1 × 2p, 13 × 1p 1 × 10p, 2 × 5p, 15 × 1p 1 × 10p, 1 × 5p, 10 × 2p 1 × 10p, 1 × 5p, 9 × 2p, 2 × 1p 1 × 10p, 1 × 5p, 8 × 2p, 4 × 1p 1 × 10p, 1 × 5p, 7 × 2p, 6 × 1p 1 × 10p, 1 × 5p, 6 × 2p, 8 × 1p 1 × 10p, 1 × 5p, 5 × 2p, 10 × 1p 1 × 10p, 1 × 5p, 4 × 2p, 12 × 1p 1 × 10p, 1 × 5p, 3 × 2p, 14 × 1p 1 × 10p, 1 × 5p, 2 × 2p, 16 × 1p 1 × 10p, 1 × 5p, 1 × 2p, 18 × 1p 1 × 10p, 1 × 5p, 20 × 1p 1 × 10p, 12 × 2p, 1 × 1p 1 × 10p, 11 × 2p, 3 × 1p 1 × 10p, 10 × 2p, 5 × 1p 1 × 10p, 9 × 2p, 7 × 1p 1 × 10p, 8 × 2p, 9 × 1p 1 × 10p, 7 × 2p, 11 × 1p 1 × 10p, 6 × 2p, 13 × 1p 1 × 10p, 5 × 2p, 15 × 1p 1 × 10p, 4 × 2p, 17 × 1p 1 × 10p, 3 × 2p, 19 × 1p 1 × 10p, 2 × 2p, 21 × 1p 1 × 10p, 1 × 2p, 23 × 1p 1 × 10p, 25 × 1p 7 × 5p 6 × 5p, 2 × 2p, 1 × 1p 6 × 5p, 1 × 2p, 3 × 1p 6 × 5p, 5 × 1p 5 × 5p, 5 × 2p 5 × 5p, 4 × 2p, 2 × 1p 5 × 5p, 3 × 2p, 4 × 1p 5 × 5p, 2 × 2p, 6 × 1p 5 × 5p, 1 × 2p, 8 × 1p 5 × 5p, 10 × 1p 4 × 5p, 7 × 2p, 1 × 1p 4 × 5p, 6 × 2p, 3 × 1p 4 × 5p, 5 × 2p, 5 × 1p 4 × 5p, 4 × 2p, 7 × 1p 4 × 5p, 3 × 2p, 9 × 1p 4 × 5p, 2 × 2p, 11 × 1p 4 × 5p, 1 × 2p, 13 × 1p 4 × 5p, 15 × 1p 3 × 5p, 10 × 2p 3 × 5p, 9 × 2p, 2 × 1p 3 × 5p, 8 × 2p, 4 × 1p 3 × 5p, 7 × 2p, 6 × 1p 3 × 5p, 6 × 2p, 8 × 1p 3 × 5p, 5 × 2p, 10 × 1p 3 × 5p, 4 × 2p, 12 × 1p 3 × 5p, 3 × 2p, 14 × 1p 3 × 5p, 2 × 2p, 16 × 1p 3 × 5p, 1 × 2p, 18 × 1p 3 × 5p, 20 × 1p 2 × 5p, 12 × 2p, 1 × 1p 2 × 5p, 11 × 2p, 3 × 1p 2 × 5p, 10 × 2p, 5 × 1p 2 × 5p, 9 × 2p, 7 × 1p 2 × 5p, 8 × 2p, 9 × 1p 2 × 5p, 7 × 2p, 11 × 1p 2 × 5p, 6 × 2p, 13 × 1p 2 × 5p, 5 × 2p, 15 × 1p 2 × 5p, 4 × 2p, 17 × 1p 2 × 5p, 3 × 2p, 19 × 1p 2 × 5p, 2 × 2p, 21 × 1p 2 × 5p, 1 × 2p, 23 × 1p 2 × 5p, 25 × 1p 1 × 5p, 15 × 2p 1 × 5p, 14 × 2p, 2 × 1p 1 × 5p, 13 × 2p, 4 × 1p 1 × 5p, 12 × 2p, 6 × 1p 1 × 5p, 11 × 2p, 8 × 1p 1 × 5p, 10 × 2p, 10 × 1p 1 × 5p, 9 × 2p, 12 × 1p 1 × 5p, 8 × 2p, 14 × 1p 1 × 5p, 7 × 2p, 16 × 1p 1 × 5p, 6 × 2p, 18 × 1p 1 × 5p, 5 × 2p, 20 × 1p 1 × 5p, 4 × 2p, 22 × 1p 1 × 5p, 3 × 2p, 24 × 1p 1 × 5p, 2 × 2p, 26 × 1p 1 × 5p, 1 × 2p, 28 × 1p 1 × 5p, 30 × 1p 17 × 2p, 1 × 1p 16 × 2p, 3 × 1p 15 × 2p, 5 × 1p 14 × 2p, 7 × 1p 13 × 2p, 9 × 1p 12 × 2p, 11 × 1p 11 × 2p, 13 × 1p 10 × 2p, 15 × 1p 9 × 2p, 17 × 1p 8 × 2p, 19 × 1p 7 × 2p, 21 × 1p 6 × 2p, 23 × 1p 5 × 2p, 25 × 1p 4 × 2p, 27 × 1p 3 × 2p, 29 × 1p 2 × 2p, 31 × 1p 1 × 2p, 33 × 1p 35 × 1p
9
2p - 9 = 5p + 12 subtract 2p fom both sides -9 = 3p +12 subtract 12 from both sides -21 = 3p divide both sides by 3 -7 = p
Costs 70p
Oh, dude, it's like basic math time! So, to figure out how many 5p coins make 45p, you just divide 45 by 5, which gives you 9. So, you need 9 shiny 5p coins to make that sweet 45p. Math can be fun, right?