Vol = pi*r2*h so 375*pi = pi*r2*15 r2 = 25 so that r = 5 cm.
549/36 = 15 r9
To produce the required answer, the question should state, "How do you calculate the radius of a sector with an angle of 1.5 radians and an area of 15 sq cm ?If an angle of 1.5 radians sweeps out an area of 15 sq cm then this is proportional to an angle of 2π radians sweeping out the area of the circle, namely πr2.1.5/2π = 15/πr2 : 1.5/2 = 15/r2 : r2 = (2 x 15)/1.5 = 30/1.5= 20If r2 = 20 then r = √20 = √(4 x 5) = 2√5
r2 (r2) refers to the radius of the cylinder squared.
Use this formula (Ï€ = Pi): Surface area = 4Ï€r2
Vol = pi*r2*h so 375*pi = pi*r2*15 r2 = 25 so that r = 5 cm.
volume = pi * r2 * h 9891 = 3.14 * r2 * 56 9891/56 = 3.14 * r2 * 56/56 176 = 3.14 * r2 176/3.14 = 3.14/3.14 * r2 56 = r2 7.5 = r 15 = d 15 meters is the diameter
x2 - (-b/a)x + (c/a) = 0 or x2 - (sum of the roots)x + (product of the roots) = 0 Let the roots be r1 and r2. So we have: r1 + r2 = 5 (r1)2 + (r2)2 = 15 r1 = 5 - r2 (express r1 in term of r2) (5 - r2)2 + (r2)2 = 15 25 - 10r2 + (r2)2 + (r2)2 = 15 2(r2)2 - 10r + 25 = 15 (subtract 15 to both sides) 2(r2)2 - 10r + 10 = 0 (divide by 2 to both sides) (r2)2 - 5r + 5 = 0 (use the quadratic formula) r2 = [-b + &- sq root of (b - 4ac)]/2a r2 = {-(-5) + &- sq root of [(-5)2 - 4(1)(5)]}/2(1) = [5 + &- sq root of (25 - 20)]/2 = (5 + &- sq root of 5)/2 r1 = 5 - r2 r1 = 5 - (5 + &- sq root of 5)/2 Thus, when r2 = (5 + sq.root of 5)/2, r1 = (5 - sq.root of 5)/2 or vice versa. Since the given equation is x2 + bx + c = 0, a = 1, then c equals to the product of roots. So that, c = (r1)(r2) = [(5 - sq.root of 5)/2][(5 + sq.root of 5)/2] = [52 - (sq.root of 5)2]/4 = 5
yes press R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2,R1,R2, then press select to complete the entire game
0
He is approximately 15 1/2 inches tall.
549/36 = 15 r9
There are 15 moves : right right up up right right down right right up left left left up right or: R2 U2 R2 D R2 U L3 U R
To produce the required answer, the question should state, "How do you calculate the radius of a sector with an angle of 1.5 radians and an area of 15 sq cm ?If an angle of 1.5 radians sweeps out an area of 15 sq cm then this is proportional to an angle of 2π radians sweeping out the area of the circle, namely πr2.1.5/2π = 15/πr2 : 1.5/2 = 15/r2 : r2 = (2 x 15)/1.5 = 30/1.5= 20If r2 = 20 then r = √20 = √(4 x 5) = 2√5
R2-D2 is his full name. His nickname is R2
pi * 225/4 Radius is 15/2 pi r2 = pi * (15/2)2 = pi * 225/4
x,x,l1,l1,x,l1,l2,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,x,x,x,x,a,b,a,b,y,x, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y ,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3xy,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3r3,r2,r2,r3,r3x,x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,b,a,a,b,a,y, r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,r3,r3,r2,r2,r3,r3x,x,b,a,a,b,a,y,