The product of 4294967296 multiplied by 4294967296 is 18446744073709551616. This result can be obtained by multiplying the two numbers together using the standard multiplication algorithm, which involves multiplying each digit of the first number by each digit of the second number and then summing up the products. The result is a very large number due to the multiplication of two 32-bit integers.
264 = 18446744073709551616
18446744073709.55
432 = 18446744073709551616
If you mean 2 x 2 (4) x 2 (8) x 2 (16), then it is 18446744073709551616.If you mean 2 x 64 it is 128.
Here is the answer to the problem: compute the exponential expression: 264 264 = 18446744073709551616, that is to say 18,446,744,073,709,551,616 is read in English as: "eighteen quintillion, four hundred fourty-six quadrillion, seven hundred fourty-four trillion, seventy-four billion, seven hundred nine million, five hundred fifty-one thousand, six hundred sixteen." In order to put this large number in perspective, let's pretend that we can spend $1,000,000 per second for each second that we have been alive. If you are thirty-seven years old now, then you are 37x365 days old, or 13,505 days old. Now multiply this by the number of hours in a day: 13,505 x 24 is 324,120 hours old. Multiply this result by the number of minutes in an hour: 324,120 x 60 = 19,447,200 minutes old. Finally, multiply this result by the number of seconds in a minute: 19,447,200 x 60 = 1,166,832,000 seconds old (about 1.2 billion!). Now, how much money does this represent? Simply (!) multiply this result by $1,000,000; but, this is VERY easy because you should recall that a one (1) followed by ANY number of 0s (zeros) is a "power of ten", and multiplying a number by a power of ten is explained in the text as follows: in order to multiply, say, 1,234 by 100, simply add two zeros to 1234, or 123400 = 123,400. Similarly, 58 x 1000 = 58000, or 58,000. So, our final answer would be: $1,166,832,000,000,000. This number is about 16,000 times SMALLER than 264, in other words, it would take ANOTHER 584,905 years of spending money at the rate of $1,000,000 per second in order to spend $18,446,744,074,709,551,616.
#include<iostream> #include<list> class big_num { friend std::ostream& operator<< (std::ostream&, const big_num&); public: big_num(unsigned __int64 value = 0): m_list() { do { m_list.push_front ((value % 10) + '0'); } while (value /= 10); } big_num& operator*= (unsigned __int64 value) { switch (value) { case (0): m_list.clear(); m_list.push_front ('0'); break; case (1): break; default: unsigned __int64 carry = 0; for (std::list<char>::reverse_iterator i=m_list.rbegin(); i!=m_list.rend(); ++i) { unsigned __int64 digit = (*i - '0') * value + carry; *i = (digit % 10) + '0'; carry = digit / 10; } while (carry) { m_list.push_front ((carry % 10) + '0'); carry /= 10; } } return *this; } private: std::list<char> m_list; }; std::ostream& operator<< (std::ostream& os, const big_num& num) { for (std::list<char>::const_iterator i=num.m_list.begin(); i!=num.m_list.end(); ++i) { os << *i; } return os; } int main () { // test big_num for powers of 2 up to and including 2^100 big_num num(1); unsigned n = 0; do { std::cout << num << std::endl; num *= 2; } while(n++<100); } Example output: 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 68719476736 137438953472 274877906944 549755813888 1099511627776 2199023255552 4398046511104 8796093022208 17592186044416 35184372088832 70368744177664 140737488355328 281474976710656 562949953421312 1125899906842624 2251799813685248 4503599627370496 9007199254740992 18014398509481984 36028797018963968 72057594037927936 144115188075855872 288230376151711744 576460752303423488 1152921504606846976 2305843009213693952 4611686018427387904 9223372036854775808 18446744073709551616 36893488147419103232 73786976294838206464 147573952589676412928 295147905179352825856 590295810358705651712 1180591620717411303424 2361183241434822606848 4722366482869645213696 9444732965739290427392 18889465931478580854784 37778931862957161709568 75557863725914323419136 151115727451828646838272 302231454903657293676544 604462909807314587353088 1208925819614629174706176 2417851639229258349412352 4835703278458516698824704 9671406556917033397649408 19342813113834066795298816 38685626227668133590597632 77371252455336267181195264 154742504910672534362390528 309485009821345068724781056 618970019642690137449562112 1237940039285380274899124224 2475880078570760549798248448 4951760157141521099596496896 9903520314283042199192993792 19807040628566084398385987584 39614081257132168796771975168 79228162514264337593543950336 158456325028528675187087900672 316912650057057350374175801344 633825300114114700748351602688 1267650600228229401496703205376