Let P(x1, y1), Q(x2, y2), and M(x3, y3).If M is the midpoint of PQ, then,(x3, y3) = [(x1 + x2)/2, (y1 + y2)/2]We need to verify that,√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2] = √[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]Let's work separately in both sides. Left side:√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2]= √[[(x1/2 + x2/2)]^2 - (2)(x1)[(x1/2 + x2/2)) + x1^2] + [(y1/2 + y2/2)]^2 - (2)(y1)[(y1/2 + y2/2)] + y1^2]]= √[[(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 - (x1)^2 - (x1)(x2) + (x1)^2 +[(y1)^2]/4 + [(y1)(y2)]/2 + [(y2)^2]/4 - (y1)^2 - (y1)(y2) + (y1)^2]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Right side:√[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]= √[[(x2)^2 - (2)(x2)[(x1/2 + x2/2)] + [(x1/2 + x2/2)]^2 + [(y2)^2 - (2)(y2)[(y1/2 + y2/2)] + [(y1/2 + y2/2)]^2]]= √[[(x2)^2 - (x1)(x2) - (x2)^2 + [(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 + (y2)^2 - (y1)[(y2) - (y2)^2 + [(y1)^2]/4) + [(y1)(y2)]/2 + [(y2)^2]/4]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Since the left and right sides are equals, the identity is true. Thus, the length of PM equals the length of MQ. As the result, M is the midpoint of PQ
x*x1/2= x3/2 Derivative = 3/2 * x1/2
The distance between two points, (x1,y1) , (x2,y2) = squareroot[(x2-x1)2 + (y2-y1)2]
The mid-point of the line segment of (x1, y1) and (x2, y2) is (x1+X2)/2 and (y1+y2)/2
If you have P1(x1, y1) and P2(x2, y2), the distance between them is:[ (x2 - x1)2 - (y2 - y1)2 ]1/2
sqr.rtx/x= sqrt.x*sqr.rtx/sqr.rtx=x/x*sqrt.x=1/sqrt.x. x1/2 = x1/2 * x1/2 = x = 1 (x1/2) /x= 1/x1/2
Let P(x1, y1), Q(x2, y2), and M(x3, y3).If M is the midpoint of PQ, then,(x3, y3) = [(x1 + x2)/2, (y1 + y2)/2]We need to verify that,√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2] = √[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]Let's work separately in both sides. Left side:√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2]= √[[(x1/2 + x2/2)]^2 - (2)(x1)[(x1/2 + x2/2)) + x1^2] + [(y1/2 + y2/2)]^2 - (2)(y1)[(y1/2 + y2/2)] + y1^2]]= √[[(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 - (x1)^2 - (x1)(x2) + (x1)^2 +[(y1)^2]/4 + [(y1)(y2)]/2 + [(y2)^2]/4 - (y1)^2 - (y1)(y2) + (y1)^2]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Right side:√[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]= √[[(x2)^2 - (2)(x2)[(x1/2 + x2/2)] + [(x1/2 + x2/2)]^2 + [(y2)^2 - (2)(y2)[(y1/2 + y2/2)] + [(y1/2 + y2/2)]^2]]= √[[(x2)^2 - (x1)(x2) - (x2)^2 + [(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 + (y2)^2 - (y1)[(y2) - (y2)^2 + [(y1)^2]/4) + [(y1)(y2)]/2 + [(y2)^2]/4]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Since the left and right sides are equals, the identity is true. Thus, the length of PM equals the length of MQ. As the result, M is the midpoint of PQ
If the variables are x1 & x2 the solution is : 1) x1=x1+x2; 2) x2=x1-x2; 3) x1=x1-x2; EX: x1=1 , x2=6; 1) x1= 1+6 = 7 2) x2= 7-6 =1 3 x1=7-1 =6 ============================================
x*x1/2= x3/2 Derivative = 3/2 * x1/2
The square root of the sum of the squares of the differences of each coordinate. In space, the distance2=(x1-x2)2+(y1-y2)2+(z1-z2)2 On a plane, the distance2=(x1-x2)2+(y1-y2)2 On a line, the distance2=(x1-x2)2 or more simply distance=absolute value of (x1-x2)
It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]
The distance between two points, (x1,y1) , (x2,y2) = squareroot[(x2-x1)2 + (y2-y1)2]
x²+2x-15=0 x1=-2/2 - Square root of ((2/2)²+15) x1=-1-4 x1=-5 x2=-2/2 + Square root of ((2/2)²+15) x2=-1+4 x2=3
2
decklist monsters:21 blue eyes white dragon x3 chaos necromancer x1 masked dragon x1 armed dragon lvl3 x2 armed dragon lvl5 x2 armed dragon lvl7 x1 armed dragon lvl10 x1 the dragon dwelling in the cave x1 flamvell guard x1 lord of d x1 vangaurd of the dragon x1 the white stone of legend x1 kaiser sea horse x1 montage dragon x1 mirage dragon x1 tyrant dragon x1 blue eyes shining dragon x1 spell cards:15 flute of summoning dragon x1 polermyzation x2 monster reborn x1 magical mallet x1 stamping destruction x2 dragons mirror x1 deifferent dimension capsule x2 dark hole x1 future fusion x1 white dragon ritual x1 swords of revealing light x1 mystical space typhoon x1 traps:10 dragons rage x1 waboku x1 enchanted javelin x1 judgment of Anubis x1 call of the haunted x1 acid trap hole x1 hidden book of spell x1 raigeki break x1 curse of Anubis x1 self destruction button x1 (hoping i wont need that anymore) extra deck:2 paladin of white dragon x1 blue eyes ultimate dragon x1
The mid-point of the line segment of (x1, y1) and (x2, y2) is (x1+X2)/2 and (y1+y2)/2
It is false-apex