210
14* 5/6 = 70/6 = 35/3
The sequence 2, 5, 14, 41, 122 appears to follow a pattern where each term is generated by multiplying the previous term by 3 and then adding 1, starting with 2. Specifically, the calculations are as follows: (2 \times 3 + 1 = 5), (5 \times 3 - 1 = 14), (14 \times 3 - 1 = 41), and (41 \times 3 - 1 = 122). This rule can be expressed as (a_n = 3a_{n-1} - 1) for (n > 1).
The series follows a pattern where each term is obtained by multiplying the previous term by 3 and then adding 1. Specifically: (2 \times 3 + 1 = 5), (5 \times 3 - 1 = 14), (14 \times 3 - 2 = 41), and (41 \times 3 - 3 = 122). Following this pattern, the next term would be (122 \times 3 - 4 = 362 - 4 = 358). Therefore, the next number in the series is 365.
3 R 7
NO, but it goes in 5 times with a remainder of 1.
5/14 * 21/35 = 5/14 * 3/5 = 1/14 * 3/1 = 3/14
3 * 3/5 = 9/5 = 14/5
14* 5/6 = 70/6 = 35/3
14 with remainder 3.
3
Oh, dude, let me grab my calculator... Alright, so 5 can go into 73 a total of 14 times with a remainder of 3. So, like, if 5 was a bus, it could pick up 14 passengers and still have 3 people waiting at the bus stop. Math and public transportation, what a combo!
3 times ! 14 plus 14 plus 14 OR 14 times 3 !
The series follows a pattern where each term is obtained by multiplying the previous term by 3 and then adding 1. Specifically: (2 \times 3 + 1 = 5), (5 \times 3 - 1 = 14), (14 \times 3 - 2 = 41), and (41 \times 3 - 3 = 122). Following this pattern, the next term would be (122 \times 3 - 4 = 362 - 4 = 358). Therefore, the next number in the series is 365.
3 R 7
NO, but it goes in 5 times with a remainder of 1.
The least common multiple (LCM) of 15 and 14 can be found by identifying their prime factors. The prime factorization of 15 is (3 \times 5) and for 14 it is (2 \times 7). To find the LCM, take the highest power of each prime: (2^1), (3^1), (5^1), and (7^1), resulting in (2 \times 3 \times 5 \times 7 = 210). Therefore, the LCM of 15 and 14 is 210.
If: 14x+1 = 3*5 then 14x = 15-1 => 14x = 14 and the value of x is 1