7.384 x 10^3 or (7 x 10^3) + (3 x 10^2) + (8 x 10^1) + (4 x 10^0)
875,020 = (8 x 10^6) + (7 x 10^5) + (5 x 10^4) + (0 x 10^3) + (0 x 10^2) + (2 x 10^1) + (0 x 10^0)
8,732.9 = (8 x 10^4) + (0 x 10^3) + (7 x 10^2) + (3 x 10^1) + (2 x 10^0) + (9/10^1)
9.35 x 10-3 = -9,350 = -((0 x 104) + (9 x 103) + (3 x 102) + (5 x 101) + (0 x 100))
x^2 + 13x + 30 = 0 x^2 + 10x + 3x + 30 = 0 x(x + 10) + 3(x + 10) = 0 (x + 3)(x + 10) = 0 x = -3 or x = -10
1000 = 1X 10(to the power of 3) 500 = 5 x 10(to the power of 2) 30 = 3 x 10(to the power of 1) 3 = 3 x 10(to the power of 0)
7.384 x 10^3 or (7 x 10^3) + (3 x 10^2) + (8 x 10^1) + (4 x 10^0)
I'll assume that's x(x - 3) - 10(x - 3) = 0 You can factor an x - 3 out of both of those. x - 10 = 0 x = 10 Check it. 10(10 - 3) - 10(10 - 3) = 0 70 - 70 = 0 It checks.
5 raised to the power 3 equals 5 x 5 x 5 = 125 a to the power of 3 equals a x a x a zero to the power 3 = 0 x 0 x 0 = 0 zero to the power 10 = 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 = 0 So you can see that no matter how many times we multiply zero by itself the answer is always zero. Hence zero raised to the power zero equals zero
875,020 = (8 x 10^6) + (7 x 10^5) + (5 x 10^4) + (0 x 10^3) + (0 x 10^2) + (2 x 10^1) + (0 x 10^0)
8,732.9 = (8 x 10^4) + (0 x 10^3) + (7 x 10^2) + (3 x 10^1) + (2 x 10^0) + (9/10^1)
100,203 in expanded form is (1 x 100000) + (0 x 10000) + (0 x 1000) + (2 x 100) + (0 x 10) + (3 x 1)(1x1,000)+(2x3) or (1 x 10^5) + (0 x 10^4) + (0 x 10^3) + (2 x 10^2) + (0 x 10^1) + (3 x 10^0)100000 + 200 + 3
9.35 x 10-3 = -9,350 = -((0 x 104) + (9 x 103) + (3 x 102) + (5 x 101) + (0 x 100))
Expanded Notation of 25,000,000 = (2 x 107) + (5 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100).
x^2 + 13x + 30 = 0 x^2 + 10x + 3x + 30 = 0 x(x + 10) + 3(x + 10) = 0 (x + 3)(x + 10) = 0 x = -3 or x = -10
243,090 = (2 x 100000) + (4 x 10000) + (3 x 1000) + (0 x 100) + (9 x 10) + (0 x 1) OR (2 x 10^5) + (4 x 10^4) + (3 x 10^3) + (0 x 10^2) + (9 x 10^1) + (0 x 10^0)
(4 x 10^8) + (2 x 10^7) + (0 x 10^6) + (8 x 10^5) + (3 x 10^4) + (2 x 10^3) + (5 x 10^2) + (4 x 10^1) + (4 x 10^0)