3*sqrt(45) - 3*sqrt(5) =3*sqrt(9*5) - 3*sqrt(5) = 3*sqrt(9)*sqrt(5) - 3*sqrt(5)= 3*3*sqrt(5) - 3*sqrt(5) (taking the principal root)= 9*sqrt(5) - 3*sqrt(5) = 6*sqrt(5)
14*sqrt(20) - 3*sqrt(125) = 14*sqrt(4*5) - 3*sqrt(25*5) = 14*sqrt(4)*sqrt(5) - 3*sqrt(25)*sqrt(5) = 14*2*sqrt(5) - 3*5*sqrt(5) = 28*sqrt(5) - 15*sqrt(5) = 13*sqrt(5)
x*sqrt(2)/{5 - sqrt(3)} = {5 + sqrt(3)} => x*sqrt(2) = {5 + sqrt(3)} * {5 - sqrt(3)} = 25 - 3 = 22 => x = 22/sqrt(2) = 22*sqrt(2)/{sqrt(2)*sqrt(2)} = 22*sqrt(2)/2 = 11*sqrt(2)
No.[5 + sqrt(3)] + [1 - sqrt(3)] = 6 is rational[5 + sqrt(3)] - [1 + sqrt(3)] = 4 is rational[5 + sqrt(3)] * [5 - sqrt(3)] = 22 is rationalsqrt(8)/sqrt(2) = +/- 2 is rational.
=(sqrt(3)*(3-sqrt(5))-sqrt(50-22*sqrt(5)))/2
3*sqrt(45) - 3*sqrt(5) =3*sqrt(9*5) - 3*sqrt(5) = 3*sqrt(9)*sqrt(5) - 3*sqrt(5)= 3*3*sqrt(5) - 3*sqrt(5) (taking the principal root)= 9*sqrt(5) - 3*sqrt(5) = 6*sqrt(5)
14*sqrt(20) - 3*sqrt(125) = 14*sqrt(4*5) - 3*sqrt(25*5) = 14*sqrt(4)*sqrt(5) - 3*sqrt(25)*sqrt(5) = 14*2*sqrt(5) - 3*5*sqrt(5) = 28*sqrt(5) - 15*sqrt(5) = 13*sqrt(5)
1/[5 + 3*sqrt(2)] = [5 - 3*sqrt(2)]/{[5 + 3*sqrt(2)][5 - 3*sqrt(2)]} = [5 + 3*sqrt(2)]/[25 - 18] = [5 - 3*sqrt(2)]/7
x*sqrt(2)/{5 - sqrt(3)} = {5 + sqrt(3)} => x*sqrt(2) = {5 + sqrt(3)} * {5 - sqrt(3)} = 25 - 3 = 22 => x = 22/sqrt(2) = 22*sqrt(2)/{sqrt(2)*sqrt(2)} = 22*sqrt(2)/2 = 11*sqrt(2)
No.[5 + sqrt(3)] + [1 - sqrt(3)] = 6 is rational[5 + sqrt(3)] - [1 + sqrt(3)] = 4 is rational[5 + sqrt(3)] * [5 - sqrt(3)] = 22 is rationalsqrt(8)/sqrt(2) = +/- 2 is rational.
=(sqrt(3)*(3-sqrt(5))-sqrt(50-22*sqrt(5)))/2
sqrt(-5) + sqrt(-20) = sqrt(-5) + sqrt(4)*sqrt(-5)= sqrt(-5) + 2*sqrt(-5) = 3*sqrt(-5)3*sqrt(5)*i or 6.7082*iwhere i is the imaginary square root of -1.
sqrt(5) + sqrt(45) = sqrt(5) + sqrt(9*5) = sqrt(5) + sqrt(9)*sqrt(5) = sqrt(5) + 3*sqrt(5) = 4*sqrt(5)
3
The square root of 1350 can be simplified by breaking down 1350 into its prime factors: 1350 = 2 x 3 x 3 x 3 x 5 x 5. Then, we can pair up the prime factors in groups of two to simplify the square root: √1350 = √(2 x 3 x 3 x 3 x 5 x 5) = 3√(2 x 5 x 3) = 3√30. So, the square root of 1350 in radical form is 3√30.
3*sqrt(45) + 7*sqrt(36) = 3*sqrt(9*5) + 7*sqrt(9*4) = 3*sqrt(9)*sqrt(5) + 7*sqrt(9)*sqrt(4) = 3*3*sqrt(5) + 7*3*2 = 9*sqrt(5) + 42 This cannot be simplified further, but it can be evaluated as 62.12461..
sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).sqrt(50) = sqrt(25*2) = sqrt(25)*sqrt(2) = 5*sqrt(2)3*sqrt(8) = 3*sqrt(4*2) = 3*sqrt(4)*sqrt(2) = 3*2*sqrt(2) = 6*sqrt(2).