answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is Divergence and curl of vector field?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How does vector calculus apply in fluid mechanics?

The velocity at each point in the fluid is a vector. If the fluid is compressible, the divergence of the velocity vector is nonzero in general. In a vortex the curl is nonzero.


Definition of Divergence of a vector field?

hedivergence of a vector fieldF= (F(x,y),G(x,y)) with continuous partial derivatives is defined by:


What is physical significance of divergence?

Divergence is a vector operator that measures the magnitude of a vector fields source or sink at a given point.


Examples of divergence of a vector field?

I am not sure if this is the answer you are looking for, since the question is listed in both Physics and Abstract Algebra, so I will try to give you some examples from physics. One of the indicators of a divergence of a vector field is the presence of a source. For example the electric field can be represented by a vector field, with each vector pointing along the field and has a length proportional to the strength of the electric field at that position. A point source then causes an electric field with a divergence at the location of the point source, with the vectors all pointing away from it (positive charge) or towards it (negative charge). Another example would be some point mass and the Newtonian gravitational field. One of Maxwell's equations states that the magnetic field cannot have any divergences meaning that there are no magnetic monopoles.


What is curl in mathematical terms?

Curl represents the force of rotation in a 3-D vector field. Generally, the curl vector at a given point is the answer to the question, "What would happen if I stuck something there that could spin but couldn't move?" Unless the curl is zero, it would spin perpendicularly to the curl vector (according to the right-hand rule), and the longer the vector is, the faster. Curl is mathematically defined in a given direction as the limit of "circulation over area", i.e. the line integral of a circle around the point, divided by the area of the circle, with the circle shrinking towards the point. More practically, the actual vector can found by taking the cross product of the gradient operator with the function that defines the field: curl_x = ∂F/∂y - ∂F/∂z curl_y = ∂F/∂z - ∂F/∂x curl_z = ∂F/∂x - ∂F/∂y

Related questions

What is the difference between curl and divergence?

Divergence: rate of spread of vector in free space for non closed path. and Curl: rate of spread of vector in free space for closed path.


Is curl of vector function F must perpendicular to every vector function f?

No, the curl of a vector field is a vector field itself and is not required to be perpendicular to every vector field f. The curl is related to the local rotation of the vector field, not its orthogonality to other vector fields.


How does vector calculus apply in fluid mechanics?

The velocity at each point in the fluid is a vector. If the fluid is compressible, the divergence of the velocity vector is nonzero in general. In a vortex the curl is nonzero.


Definition of Divergence of a vector field?

hedivergence of a vector fieldF= (F(x,y),G(x,y)) with continuous partial derivatives is defined by:


What is transformed divergence?

Transformed divergence is a concept in vector calculus that involves calculating the divergence of a vector field after applying a transformation to the coordinate system. This technique is often used to simplify calculations in complex systems by changing the coordinate system to make the divergence easier to compute.


What is physical significance of divergence?

Divergence is a vector operator that measures the magnitude of a vector fields source or sink at a given point.


Examples of divergence of a vector field?

I am not sure if this is the answer you are looking for, since the question is listed in both Physics and Abstract Algebra, so I will try to give you some examples from physics. One of the indicators of a divergence of a vector field is the presence of a source. For example the electric field can be represented by a vector field, with each vector pointing along the field and has a length proportional to the strength of the electric field at that position. A point source then causes an electric field with a divergence at the location of the point source, with the vectors all pointing away from it (positive charge) or towards it (negative charge). Another example would be some point mass and the Newtonian gravitational field. One of Maxwell's equations states that the magnetic field cannot have any divergences meaning that there are no magnetic monopoles.


Continuity equation for time varying field?

The continuity equation for a time-varying field relates the divergence of the field with the rate of change of field strength at any given point. Mathematically, it is expressed as ∇⋅E = -∂ρ/∂t, where ∇ is the divergence operator, E is the field, ρ is the charge density, and ∂/∂t represents the partial derivative with respect to time. This equation ensures that the field and charge distributions are consistent over time, in accordance with the principle of charge conservation.


Is every irrotational vector field conservative?

Yes, every irrotational vector field is conservative because a vector field being irrotational implies that its curl is zero, which, by one of the fundamental theorems of vector calculus, implies that the vector field is conservative.


Why curl of electrical field is zero?

The curl of an electric field is zero because electric fields are conservative, meaning the work done by the field on a charge moving around a closed path is zero. This implies that the circulation of the electric field around any closed loop is zero, leading to a curl of zero.


What is curl in mathematical terms?

Curl represents the force of rotation in a 3-D vector field. Generally, the curl vector at a given point is the answer to the question, "What would happen if I stuck something there that could spin but couldn't move?" Unless the curl is zero, it would spin perpendicularly to the curl vector (according to the right-hand rule), and the longer the vector is, the faster. Curl is mathematically defined in a given direction as the limit of "circulation over area", i.e. the line integral of a circle around the point, divided by the area of the circle, with the circle shrinking towards the point. More practically, the actual vector can found by taking the cross product of the gradient operator with the function that defines the field: curl_x = ∂F/∂y - ∂F/∂z curl_y = ∂F/∂z - ∂F/∂x curl_z = ∂F/∂x - ∂F/∂y


What is meant by curl of a vector in maths?

In mathematics, the curl of a vector is the maximum rotation on a vector field, oriented perpendicularly to the certain plane. The curl of a vector is defined by this form: ∇ x F = [i . . . . j . . . . . k] [∂/∂x ∂/∂y ∂/∂z] [P. . . Q. . . .R. . ] ...given that F = <P,Q,R> or Pi + Qj + Rk Perform the cross-product of the terms to obtain: ∇ x F = (∂R/∂y - ∂Q/∂z)i + (∂P/∂z - ∂R/∂x)j + (∂Q/∂x - ∂P/∂y)k