answersLogoWhite

0

H. G. Wells was born on September 21, 1866.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BeauBeau
You're doing better than you think!
Chat with Beau
RossRoss
Every question is just a happy little opportunity.
Chat with Ross

Add your answer:

Earn +20 pts
Q: What is H. G. Wells's birthday?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Evaluating the indicated expressions if g-7-h-35?

= g-7-h-35=g-h-42 =


What is index in group theory?

Say we have a group G, and some subgroup H. The number of cosets of H in G is called the index of H in G. This is written [G:H].If G and H are finite, [G:H] is just |G|/|H|.What if they are infinite? Here is an example. Let G be the integers under addition. Let H be the even integers under addition, a subgroup. The cosets of H in G are H and H+1. H+1 is the set of all even integers + 1, so the set of all odd integers. Here we have partitioned the integers into two cosets, even and odd integers. So [G:H] is 2.


What is subgroup in mathematics?

In mathematics, a subgroup H of a group G is a subset of G which is also a group with respect to the same group operation * defined on G. H contains the identity element of G, is closed with respect to *, and all elements of H have their inverses in H as well.


How do you prove Cayley's theorem which states that every group is isomorphic to a permutation group?

Cayley's theorem:Let (G,$) be a group. For each g Є G, let Jg be a permutation of G such thatJg(x) = g$xJ, then, is a function from g to Jg, J: g --> Jg and is an isomorphism from (G,$) onto a permutation group on G.Proof:We already know, from another established theorem that I'm not going to prove here, that an element invertible for an associative composition is cancellable for that composition, therefore Jg is a permutation of G. Given another permutation, Jh = Jg, then h = h$x = Jh(x) = Jg(x) = g$x = g, meaning J is injective. Now for the fun part!For every x Є G, a composition of two permutations is as follows:(Jg ○ Jh)(x) = Jg(Jh(x)) = Jg(h$x) = g$(h$x) = (g$h)$x = Jg$h(x)Therefore Jg ○ Jh = Jg$h(x) for all g, h Є GThat means that the set Ђ = {Jg: g Є G} is a stable subset of the permutation subset of G, written as ЖG, and J is an isomorphism from G onto Ђ. Consequently, Ђ is a group and therefore is a permutation group on G.Q.E.D.


What is the algebraic expression for 10 times the sum of g over h?

There seems to be something missing in the question. But, as it stands, the expression is 10*g/h