transformation
Displacement
ordered pair
Reflection
The new figure after a transformation is the result of applying specific changes to the original shape, such as translation, rotation, reflection, or scaling. Each transformation alters the figure's position, orientation, or size while maintaining its fundamental properties. To determine the coordinates or characteristics of the new figure, one must apply the transformation rules to the original figure's vertices or points accordingly. The resulting figure can vary in appearance but retains the same overall structure and proportions as the original.
The new resulting figure after transformation depends on the specific type of transformation applied, such as translation, rotation, reflection, or scaling. Each transformation alters the original figure's position, orientation, or size while maintaining its fundamental shape and properties. To determine the exact resulting figure, details about the transformation parameters and the original figure are necessary. Without that information, it's impossible to specify the new figure accurately.
The resulting figure after a transformation is the new shape or position of a geometric figure following operations such as translation, rotation, reflection, or dilation. This transformation alters the original figure's size, orientation, or position while maintaining its fundamental properties, such as angles and relative distances. For example, a triangle might be rotated 90 degrees, resulting in a triangle that is oriented differently but still congruent to the original.
ordered pair
Rotation
Reflection
It is called a reflection.
you guys dont know me eitherA translationTranslationA translation is movement of a figure to a new position along a straight line.
The new figure after a transformation is the result of applying specific changes to the original shape, such as translation, rotation, reflection, or scaling. Each transformation alters the figure's position, orientation, or size while maintaining its fundamental properties. To determine the coordinates or characteristics of the new figure, one must apply the transformation rules to the original figure's vertices or points accordingly. The resulting figure can vary in appearance but retains the same overall structure and proportions as the original.
The new resulting figure after transformation depends on the specific type of transformation applied, such as translation, rotation, reflection, or scaling. Each transformation alters the original figure's position, orientation, or size while maintaining its fundamental shape and properties. To determine the exact resulting figure, details about the transformation parameters and the original figure are necessary. Without that information, it's impossible to specify the new figure accurately.
The resulting figure after a transformation is the new shape or position of a geometric figure following operations such as translation, rotation, reflection, or dilation. This transformation alters the original figure's size, orientation, or position while maintaining its fundamental properties, such as angles and relative distances. For example, a triangle might be rotated 90 degrees, resulting in a triangle that is oriented differently but still congruent to the original.
to slide or move a figure to a new position along a striaght line
What is a preimage. (The new figure is called the image.)
our apprehension of the figure as got more exacting in definition, the figure as not changed but our understanding of it does, be it the correct or incorrect.
a transformation.