answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is WKB methodHow you get solutions of differential equations using WKB method?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the theory of finite differential method?

Finite Differential Methods (FDM) are numerical methods for approximating the solutions to differential equations using finite difference equations to approximate derivatives.


What has the author Tarek P A Mathew written?

Tarek P. A. Mathew has written: 'Domain decomposition methods for the numerical solution of partial differential equations' -- subject(s): Decomposition method, Differential equations, Partial, Numerical solutions, Partial Differential equations


What is monge's Method?

Monge's method, also known as the method of characteristics, is a mathematical technique used to solve certain types of partial differential equations. It involves transforming a partial differential equation into a system of ordinary differential equations by introducing characteristic curves. By solving these ordinary differential equations, one can find a solution to the original partial differential equation.


Which numerical method for solving differential equations methods gives the most inaccurate result?

Euler's Method (see related link) can diverge from the real solution if the step size is chosen badly, or for certain types of differential equations.


What has the author C William Gear written?

C. William Gear has written: 'Introduction to computers, structured programming, and applications' 'Runge-Kutta starters for multistep methods' -- subject(s): Differential equations, Numerical solutions, Runga-Kutta formulas 'BASIC language manual' -- subject(s): BASIC (Computer program language) 'Applications and algorithms in science and engineering' -- subject(s): Data processing, Science, Engineering, Algorithms 'Future developments in stiff integration techniques' -- subject(s): Data processing, Differential equations, Nonlinear, Jacobians, Nonlinear Differential equations, Numerical integration, Numerical solutions 'ODEs, is there anything left to do?' -- subject(s): Differential equations, Numerical solutions, Data processing 'Computer applications and algorithms' -- subject(s): Computer algorithms, Computer programming, FORTRAN (Computer program language), Pascal (Computer program language), Algorithmes, PASCAL (Langage de programmation), Programmation (Informatique), Fortran (Langage de programmation) 'Method and initial stepsize selection in multistep ODE solvers' -- subject(s): Differential equations, Numerical solutions, Data processing 'Stability of variable-step methods for ordinary differential equations' -- subject(s): Differential equations, Numerical solutions, Convergence 'What do we need in programming languages for mathematical software?' -- subject(s): Programming languages (Electronic computers) 'Introduction to computer science' -- subject(s): Electronic digital computers, Electronic data processing 'PL/I and PL/C language manual' -- subject(s): PL/I (Computer program language), PL/C (Computer program language) 'Stability and convergence of variable order multistep methods' -- subject(s): Differential equations, Numerical solutions, Numerical analysis 'Unified modified divided difference implementation of Adams and BDF formulas' -- subject(s): Differential equations, Numerical solutions, Data processing 'Asymptotic estimation of errors and derivatives for the numerical solution of ordinary differential equations' -- subject(s): Differential equations, Numerical solutions, Error analysis (Mathematics), Estimation theory, Asymptotic expansions 'FORTRAN and WATFIV language manual' -- subject(s): FORTRAN IV (Computer program language) 'Computation and Cognition' 'Numerical integration of stiff ordinary differential equations' -- subject(s): Differential equations, Numerical solutions


What is a PECE?

PECE stands for several things. In mathematics PECE is a method used to solve differential equations.


What has the author Zigo Haras written?

Zigo Haras has written: 'The large discretization step method for time-dependent partial differential equations' -- subject(s): Algorithms, Approximation, Discrete functions, Hyperbolic Differential equations, Mathematical models, Multigrid methods, Partial Differential equations, Time dependence, Time marching, Two dimensional models, Wave equations


What has the author Hans F Weinberger written?

Hans F. Weinberger has written: 'A first course in partial differential equations with complex variables and transform methods' -- subject(s): Partial Differential equations 'Variational Methods for Eigenvalue Approximation (CBMS-NSF Regional Conference Series in Applied Mathematics)' 'A first course in partial differential equations with complex variables and transform method' 'Maximum Principles in Differential Equations'


What has the author S G Gindikin written?

S. G. Gindikin has written: 'The method of Newton's polyhedron in the theory of partial differential equations' -- subject(s): Newton diagrams, Partial Differential equations 'Tube domains and the Cauchy problem' -- subject(s): Cauchy problem, Differential operators


What is an Homotopy continuation Method?

A way to solve a system of equations by keeping track of the solutions of other systems of equations. See link for a more in depth answer.


What are the applications of runge kutta method?

The Runge-Kutta method is one of several numerical methods of solving differential equations. Some systems motion or process may be governed by differential equations which are difficult to impossible to solve with emperical methods. This is where numerical methods allow us to predict the motion, without having to solve the actual equation.


What has the author Jeffrey S Scroggs written?

Jeffrey S. Scroggs has written: 'An iterative method for systems of nonlinear hyperbolic equations' -- subject(s): Algorithms, Hyperbolic Differential equations, Iterative solution, Nonlinear equations, Parallel processing (Computers)