A cube factor is a number that can be expressed as the cube of an integer. For example, 1, 8, and 27 are cube factors because they can be written as (1^3), (2^3), and (3^3), respectively. In mathematical terms, if a number can be divided evenly by another number that is a perfect cube, the latter is considered a cube factor of the former. Cube factors are useful in various mathematical contexts, including number theory and algebra.
One is the only factor of 50 that is a cube.
don't know if I understand your question, but: there are no numbers that are both cube numbers and prime numbers 8 is a factor of 16 that is a cube number (2^3) 2 is a factor of 16 that is a prime number
125
If a factor appears 3 times, you get this factor (only once) times the cube root of a smaller number (the original number divided by the factor cubed).
64! -Apex
One is the only factor of 50 that is a cube.
To find the largest perfect cube factor of 189, we first need to factor it into its prime components. The prime factorization of 189 is (3^3 \times 7^1). The largest perfect cube that can be formed from these factors is (3^3), which equals 27. Therefore, the largest perfect cube factor of 189 is 27.
8
don't know if I understand your question, but: there are no numbers that are both cube numbers and prime numbers 8 is a factor of 16 that is a cube number (2^3) 2 is a factor of 16 that is a prime number
8
125
If a factor appears 3 times, you get this factor (only once) times the cube root of a smaller number (the original number divided by the factor cubed).
64! -Apex
8... apex :)
the cube root of 25
The volume of a cube is proportional to the cube of its edge.If the edge is doubled, the volume increases by a factor of (2)3 = 8
If the volume of a cube is increased by a factor of 8, the side length of the cube must also increase. Since the volume ( V ) of a cube is given by ( V = s^3 ) (where ( s ) is the side length), if the volume increases by a factor of 8, the new volume is ( 8s^3 ). To find the new side length, we take the cube root of both sides, resulting in ( s' = 2s ). Thus, the side length of the cube doubles.