In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions.
This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a.
The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
Chat with our AI personalities
Factor it! Set each equal to zero! Solve
Derivative calculators are commonly used to help solve simple differential calculus equations. Generally, they are not able to solve complex calculus equations.
Put the equation into ax²+bx+c=0 form. The discriminant is b²-4ac. If it is negative, there are no real roots. If it is 0, there is one real root. If it is positive, there are 2 real roots. ■
he helped people solve intricate mathematical equations
It tells you the order in which the equation needs to be simplified.