If you are asking what is four (4) in the binary system, the answer is 100.
its called a Nibble
Octal numbers are in the range 0 to 7. Since 111 binary is 7 decimal, every three bits in a binary number can be directly converted to a single octal digit. Thus the 9-bit binary number 101011100 can be split into three groups of three bits, 101 011 100, each of which can be converted to octal, 5 3 4, making the octal representation 5348. If a binary number is not an exact multiple of 3 bits, pad with zeroes until it is. Note that all bases that are a power of 2 are directly related to binary. A single base-4 digit represents two binary digits, while a base-8 digit represents three bits, base-16 every four bits, and so on.
A binary number containing eight bits is referred to as one "Byte". A binary number containing four bits is referred to as one "Nibble".
Each octal digit is equivalent to three binary digits; each hexadecimal digit is equal to four binary digits. I think the best way to do this conversion is to convert each octal digit into the binary equivalent (3 digits in each case - don't omit the zeros on the left), then convert the binary to hexadecimal by grouping four binary digits at a time (starting from the right). Note that nowadays, most scientific calculators - including the calculator that comes included in Windows - have the ability to do this sort of conversion. If you want to practice doing it yourself, you can still use the Windows calculator to check your calculations.
four
If you are asking what is four (4) in the binary system, the answer is 100.
its called a Nibble
The binary number 1000 is the decimal (base 10) number 8. The digits in a binary number are exponents of 2 rather than 10, so that for a four-digit number in binary, the digit places represent 8, 4, 2, 1 1000 (binary) = 8 + (0x4) + (0x2) + (0x1) = 8
Octal numbers are in the range 0 to 7. Since 111 binary is 7 decimal, every three bits in a binary number can be directly converted to a single octal digit. Thus the 9-bit binary number 101011100 can be split into three groups of three bits, 101 011 100, each of which can be converted to octal, 5 3 4, making the octal representation 5348. If a binary number is not an exact multiple of 3 bits, pad with zeroes until it is. Note that all bases that are a power of 2 are directly related to binary. A single base-4 digit represents two binary digits, while a base-8 digit represents three bits, base-16 every four bits, and so on.
A binary number containing eight bits is referred to as one "Byte". A binary number containing four bits is referred to as one "Nibble".
The binary number 1111 is 15. The digits in a binary number are exponents of 2 rather than 10, so that for a four digit number in binary, the digit places represent 8, 4, 2, 1 instead of increasing values of 10. 1111 = 8+4+2+1 = 15
Example Binary 00111000 Convert to Decimal 56 Convert to BCD by using groups of four binary numbers for each digit 5 6 0101 0110
You could first convert it to binary, and then to hexadecimal. Because octal and hexadecimal bases are both powers of two, the conversion between those bases and binary is quite easy. To go from octal to binary, take each digit in the number, and convert it to three binary digits: 5 -> 101 3 -> 011 2 -> 010 4 -> 100 So the binary version of the number is: 101 011 011 010 100 In order to convert to hexadecimal, your number of digits needs to be divisible by four (as 24 = 16). To get that, we need to add a digit, which will be a zero as our leftmost digit: 0101 0110 1101 0100 Now we can convert each of those sets of four binary digits into single hexadecimal digits, giving us our final answer: 9AD8
Your finger is a digit.This is a single digit.Please enter your four digit PIN number.
Convert each hex digit to four binary digits. If you get less than three (for example, 7 --> 111), fill it out with zeroes to the left (in this case, 0111).
Each octal digit is equivalent to three binary digits; each hexadecimal digit is equal to four binary digits. I think the best way to do this conversion is to convert each octal digit into the binary equivalent (3 digits in each case - don't omit the zeros on the left), then convert the binary to hexadecimal by grouping four binary digits at a time (starting from the right). Note that nowadays, most scientific calculators - including the calculator that comes included in Windows - have the ability to do this sort of conversion. If you want to practice doing it yourself, you can still use the Windows calculator to check your calculations.