That's a proper function, a conformal mapping, etc.
A relation is not a function if it assigns the same input value to multiple output values. In other words, for a relation to be a function, each input must have exactly one output. If an input corresponds to two or more different outputs, the relation fails the vertical line test, indicating that it is not a function. For example, the relation {(1, 2), (1, 3)} is not a function because the input '1' is linked to both '2' and '3'.
An example of a relation that is not a function is the relation defined by the set of points {(1, 2), (1, 3), (2, 4), (3, 5)}. In this relation, the input value 1 corresponds to two different output values (2 and 3), violating the definition of a function, which states that each input must have exactly one output. Therefore, since one input maps to multiple outputs, this relation is not a function.
A relation is a mapping or pairing of input values with output values.
This statement is incorrect. A mapping diagram can represent both functions and relations. A relation is any set of ordered pairs, while a function is a specific type of relation where each input (or domain element) is associated with exactly one output (or range element). In a mapping diagram, if each input has a single output, it represents a function; if an input has multiple outputs, it represents a relation that is not a function.
Relation
No, not every relation is a function. In order for a relation to be a function, each input value must map to exactly one output value. If any input value maps to multiple output values, the relation is not a function.
It's a type of function
It is a bijective function.
Is called "function".
A one-to-one or injective function.
A relation is not a function if it assigns the same input value to multiple output values. In other words, for a relation to be a function, each input must have exactly one output. If an input corresponds to two or more different outputs, the relation fails the vertical line test, indicating that it is not a function. For example, the relation {(1, 2), (1, 3)} is not a function because the input '1' is linked to both '2' and '3'.
function
An example of a relation that is not a function is the relation defined by the set of points {(1, 2), (1, 3), (2, 4), (3, 5)}. In this relation, the input value 1 corresponds to two different output values (2 and 3), violating the definition of a function, which states that each input must have exactly one output. Therefore, since one input maps to multiple outputs, this relation is not a function.
A relation is a mapping or pairing of input values with output values.
A relation is a function if every input has a distinct output.
Productivity
This statement is incorrect. A mapping diagram can represent both functions and relations. A relation is any set of ordered pairs, while a function is a specific type of relation where each input (or domain element) is associated with exactly one output (or range element). In a mapping diagram, if each input has a single output, it represents a function; if an input has multiple outputs, it represents a relation that is not a function.