Q: What is a three dimensional shape that has a octagonal base?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Cone

a triangular pyramid

When describing three-dimensional shapes, we can use a variety of words and terms, which are often based on the shape's properties, dimensions, symmetries, surface properties, and relationship to other shapes. Here are some common words to describe three-dimensional shapes: β geometry β : This is a broad term used to describe any object that has a three-dimensional spatial shape. β polyhedron β : a three-dimensional shape consisting of multiple planar polygonal faces, such as a cube, tetrahedron (pyramid), octahedron, etc. β sphere β : a three-dimensional shape with all points equidistant from the center of the sphere and perfect symmetry. β cylinder β : A three-dimensional shape formed by a rectangular or circular base rotated once along one side, having two parallel circular bases. β cone β : A three-dimensional shape formed by connecting a circular base and a vertex (not on the base) by straight lines (bus bars). The distance from the base to the vertex is called the height. β prism β : a three-dimensional shape with a polygon on the bottom and a rectangle or parallelogram on the sides, such as a cuboid or triangular prism. β pyramid β : a three-dimensional shape with a polygon on the base, the vertices not on the base, and a triangle on the sides, such as a tetrahedron (triangular pyramid). β surface β : a three-dimensional shape, such as a sphere, cylinder, or cone, with a surface rather than a planar polygon. β symmetry β : describes the properties of three-dimensional shapes that remain constant under operations such as rotation, reflection, or translation, such as a sphere having perfect symmetry in all directions. β volume β : The size of the space occupied by a three-dimensional shape, usually measured in cubic units, such as cubic meters. β surface area β : The sum of all outer surface areas of a three-dimensional shape, used to describe the shape's outer covering area. β edge β : a line segment connecting two vertices, especially in polyhedra. β vertex β : the intersection of three or more edges in a three-dimensional shape. β surface β : a two-dimensional area enclosed by an edge in a three-dimensional shape. It can be a plane or a surface. β Irregular shape β : a three-dimensional shape that cannot be accurately described by simple geometry or regular combinations. These words and terms provide a rich linguistic tool for describing and understanding three-dimensional shapes.

A rectangular prism is a three dimensional shape. The two bases are squares and the four sides are rectangles.

2

Related questions

Octagonal prism

prism

Cone

a triangular pyramid

Octagonal pyramid

A pyramid.

rectangular pyramid

cube square prism

When describing three-dimensional shapes, we can use a variety of words and terms, which are often based on the shape's properties, dimensions, symmetries, surface properties, and relationship to other shapes. Here are some common words to describe three-dimensional shapes: β geometry β : This is a broad term used to describe any object that has a three-dimensional spatial shape. β polyhedron β : a three-dimensional shape consisting of multiple planar polygonal faces, such as a cube, tetrahedron (pyramid), octahedron, etc. β sphere β : a three-dimensional shape with all points equidistant from the center of the sphere and perfect symmetry. β cylinder β : A three-dimensional shape formed by a rectangular or circular base rotated once along one side, having two parallel circular bases. β cone β : A three-dimensional shape formed by connecting a circular base and a vertex (not on the base) by straight lines (bus bars). The distance from the base to the vertex is called the height. β prism β : a three-dimensional shape with a polygon on the bottom and a rectangle or parallelogram on the sides, such as a cuboid or triangular prism. β pyramid β : a three-dimensional shape with a polygon on the base, the vertices not on the base, and a triangle on the sides, such as a tetrahedron (triangular pyramid). β surface β : a three-dimensional shape, such as a sphere, cylinder, or cone, with a surface rather than a planar polygon. β symmetry β : describes the properties of three-dimensional shapes that remain constant under operations such as rotation, reflection, or translation, such as a sphere having perfect symmetry in all directions. β volume β : The size of the space occupied by a three-dimensional shape, usually measured in cubic units, such as cubic meters. β surface area β : The sum of all outer surface areas of a three-dimensional shape, used to describe the shape's outer covering area. β edge β : a line segment connecting two vertices, especially in polyhedra. β vertex β : the intersection of three or more edges in a three-dimensional shape. β surface β : a two-dimensional area enclosed by an edge in a three-dimensional shape. It can be a plane or a surface. β Irregular shape β : a three-dimensional shape that cannot be accurately described by simple geometry or regular combinations. These words and terms provide a rich linguistic tool for describing and understanding three-dimensional shapes.

The Area of its base times the height of the shape.

A 3-dimensional shape with eight sides is an octahedron. If you would refer to a 3-dimensional octagon, just call it that, people will understand what you mean. Or maybe you mean an octagonal prism. That's an octagon, except it is extended into the third dimension by stretching it, so it has an octagonal base but the other sides are triangles all connecting at one point above the octagon.

A hemisphere is half of a sphere. It is a three-dimensional shape with a flat base and a curved surface that extends up to a semicircular shape.