sss
Yes, you can use either the ASA (Angle-Side-Angle) Postulate or the AAS (Angle-Angle-Side) Theorem to prove triangles congruent, as both are valid methods for establishing congruence. ASA requires two angles and the included side to be known, while AAS involves two angles and a non-included side. If you have the necessary information for either case, you can successfully prove the triangles are congruent.
No, the AAS (Angle-Angle-Side) postulate is not equal to SAA (Side-Angle-Angle) because they describe different properties in triangle congruence. AAS states that if two angles and a non-included side of one triangle are equal to two angles and the corresponding non-included side of another triangle, the triangles are congruent. Conversely, SAA typically refers to the same scenario but is not a standard term used in triangle congruence proofs. Both lead to triangle congruence, but they are not interchangeable terms.
Could you please specify which postulate you are referring to?
Yes, triangles ABC and DEF are congruent if all corresponding sides and angles are equal. The congruence postulate that applies in this case could be the Side-Angle-Side (SAS) postulate, which states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the triangles are congruent. Other applicable postulates include Side-Side-Side (SSS) and Angle-Angle-Side (AAS), depending on the known measurements.
AAS
sss
AAS (apex)
AAS theorem and ASA postulate by john overbay
Asa /sss
i got AAS for apex on this question...
The correct answer is the AAS theorem
It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.
Yes, you can use either the ASA (Angle-Side-Angle) Postulate or the AAS (Angle-Angle-Side) Theorem to prove triangles congruent, as both are valid methods for establishing congruence. ASA requires two angles and the included side to be known, while AAS involves two angles and a non-included side. If you have the necessary information for either case, you can successfully prove the triangles are congruent.
AAS: If Two angles and a side opposite to one of these sides is congruent to thecorresponding angles and corresponding side, then the triangles are congruent.How Do I know? Taking Geometry right now. :)
Could you please specify which postulate you are referring to?
midpoint postulate