A proper subset B of a set A is a set all of whose elements are elements of A nad there are elements of A that are not elements of B. It follows, then, that an improper subset must be the whole set, A. That is, A is an improper subset of A
Recall that Improper subset of A is the set that contains all and only elements of A. Namely A. So does the empty set have all of A provided A is not empty? Of course not! The empty set can be only considered an improper subset of itself.
If you have a set S, the only improper subset of S is S itself. An improper subset contains all elements of S and no others. It is therefore equivalent to S. For example if S ={1,2,3} then the improper subset is {1,2,3}, and an example proper subset is {1,2}.
no
Improper
An improper subset is identical to the set of which it is a subset. For example: Set A: {1, 2, 3, 4, 5} Set B: {1, 2, 3, 4, 5} Set B is an improper subset of Set Aand vice versa.
A proper subset B of a set A is a set all of whose elements are elements of A nad there are elements of A that are not elements of B. It follows, then, that an improper subset must be the whole set, A. That is, A is an improper subset of A
Recall that Improper subset of A is the set that contains all and only elements of A. Namely A. So does the empty set have all of A provided A is not empty? Of course not! The empty set can be only considered an improper subset of itself.
no
Improper
She received a warning for her improper conduct during the meeting.
An improper subset is identical to the set of which it is a subset. For example: Set A: {1, 2, 3, 4, 5} Set B: {1, 2, 3, 4, 5} Set B is an improper subset of Set Aand vice versa.
Two
if A element exis in set B thiscalled proper sub set
First of all, the null set( denoted by is a subset of every set. But it being a proper set or improper set is debatable. Many mathematicians regard it as an improper set, and rightly have as when we say a set is a subset of another, the super set always contains at least one element. For eg,. Let A be the set, in roster form we take it as: A = {ϕ}, we clearly see n(A)=1 then P(A) = {ϕ,{ϕ}} We observe that at least a set must have 1 element for it to have a proper set, but if we take A = ϕ ( i.e. n(A)=0), then clearly ϕ and A itself are improper sets of A and. Hence the minimum amount of proper sets a set has is nil and improper is 2. But I have seen a few high school text books who regard null set as a proper set, which is totally false, arguable by mathematicians, clearly signifying the lethargy of authors of the book failing to update their error driven books. I assure you, that null set is an improper set of every set.
Yes because they can be expressed as improper fractions
yes, if the set being described is empty, we can talk about proper and improper subsets. there are no proper subsets of the empty set. the only subset of the empty set is the empty set itself. to be a proper subset, the subset must be strictly contained. so the empty set is an improper subset of itself, but it is a proper subset of every other set.