answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is an improper set?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is an improper subset?

An improper subset is identical to the set of which it is a subset. For example: Set A: {1, 2, 3, 4, 5} Set B: {1, 2, 3, 4, 5} Set B is an improper subset of Set Aand vice versa.


What is improper subset?

A proper subset B of a set A is a set all of whose elements are elements of A nad there are elements of A that are not elements of B. It follows, then, that an improper subset must be the whole set, A. That is, A is an improper subset of A


Is empty set an improper subset?

Recall that Improper subset of A is the set that contains all and only elements of A. Namely A. So does the empty set have all of A provided A is not empty? Of course not! The empty set can be only considered an improper subset of itself.


What the example of improper subset?

If you have a set S, the only improper subset of S is S itself. An improper subset contains all elements of S and no others. It is therefore equivalent to S. For example if S ={1,2,3} then the improper subset is {1,2,3}, and an example proper subset is {1,2}.


Is empty set an improper subset or not?

no


When two fractions have the same part of a region or a set is called an improper or proper fraction?

Improper


How do you use the word improper in a sentence?

She received a warning for her improper conduct during the meeting.


What is an subset?

An improper subset is identical to the set of which it is a subset. For example: Set A: {1, 2, 3, 4, 5} Set B: {1, 2, 3, 4, 5} Set B is an improper subset of Set Aand vice versa.


How many improper subsets are there in a finite set?

Two


What are improper sets?

if A element exis in set B thiscalled proper sub set


Is null set proper subset of every set?

First of all, the null set( denoted by is a subset of every set. But it being a proper set or improper set is debatable. Many mathematicians regard it as an improper set, and rightly have as when we say a set is a subset of another, the super set always contains at least one element. For eg,. Let A be the set, in roster form we take it as: A = {ϕ}, we clearly see n(A)=1 then P(A) = {ϕ,{ϕ}} We observe that at least a set must have 1 element for it to have a proper set, but if we take A = ϕ ( i.e. n(A)=0), then clearly ϕ and A itself are improper sets of A and. Hence the minimum amount of proper sets a set has is nil and improper is 2. But I have seen a few high school text books who regard null set as a proper set, which is totally false, arguable by mathematicians, clearly signifying the lethargy of authors of the book failing to update their error driven books. I assure you, that null set is an improper set of every set.


Does the set of rational numbers include the set of whole numbers?

Yes because they can be expressed as improper fractions