170/2 = 85 R 0. Therefore binary number so far is 0.85/2 = 42 R 1. Therefore binary number so far is 10.42/2 = 21 R 0. Therefore binary number so far is 010.21/2 = 10 R 1. Therefore binary number so far is 1010.10/2 = 5 R 0. Therefore binary number so far is 01010.5/2 = 2 R 1. Therefore binary number so far is 101010.2/2 = 1 R 0. Therefore binary number so far is 0101010.1/2 = 0 R 1. Therefore binary number so far is 10101010.The integer portion of last division was 0 so for the decimal number 170, the binary equivalent is 10101010.
easy, 1011. in binary of course. convert 1011 binary to decimal you get 11.
You can are ASCII-tabellen. For converting binary to text
51 in binary is... 110011
Decimal 192 = Binary 11000000
42 = 101010
The binary number 101010 equals 42
If you mean "How to convert binary 42 to base 10" then it is not valid.Binary numbers have primitive symbols of 0 an 1 and thus 42 is not binary
101010
101010 = 42
1..15 (not allowing empty trees).
42 count the zeros and use like this. 1 and 5 zeros, is 2^5 = 36 1 and 2 zeros, 4 = 40 10 is 2, so 42
Capella is the brightest star in the constellation Auriga.It has an apparent magnitude of +0.91.However Capella is a four star system split into two pairs of binary star systems. They just appear from Earth as a single star.
I'm not entirely sure what you're asking.In one sense, "binary number" means a quantity that can take on only two possible values. "True" or "False," for example. "On" or "off." "1" or "0."You can, however, represent other values using a "binary" system. Computers store ordinary numbers like "42" in a binary format. In that case, you'd have something like "0010 1010".
Binary in R is the same as binary in any other programming language. The language doesn't actually change the meaning of binary any more than it can change the meaning of decimal, octal or hexadecimal. These are all symbolic representations (notations) for digital information. When we see the symbol 42 we instantly recognise it as the value forty-two because we automatically assume numeric symbols are always written in decimal notation. However, the computer represents the value forty-two as 00101010, which is the binary equivalent. In order to present the decimal value to the user, the computer must convert the value 00101010 to the string "42". This is achieved through binary division by ten (00001010 in binary) and taking the remainder: 00101010 / 00001010 = 00000100 r 00000010 00000100 / 00001010 = 00000000 r 00000100 The remainders are decimal 2 and 4 respectively. Now we convert each of these digits to their equivalent ASCII character code by adding 48 (binary 110000), which is the ASCII code for character '0': 00000010 + 00110000 = 00110010 00000100 + 00110000 = 00110100 We output these two ASCII character codes in reverse order, so we now have {00110100, 00110010} which is {52, 50} in decimal. ASCII character code 52 yields '4' while ASCII character code 50 yields '2', which gives us the complete string, "42", which can now be presented to the user. Converting the other way takes the user-input string "42" and stores the value 00101010: First, subtract character code '0' (48 decimal) from each character: 00110010 - 00110000 = 00000010 (50 - 48 = 2) 00110100 - 00110000 = 00000100 (52 - 48 = 4) Multiply each digit by increasing powers of 10: 00000010 * 00000001 = 00000010 (2 * 10^0 = 2) 00000100 * 00001010 = 00101000 (4 * 10^1 = 40) Finally, sum the products: 00000010 + 00101000 = 00101010 (2 + 40 = 42) If we wish to see the binary representation of an integer, R provides the Int2Bin function: >intToBin(42, 8) [1] "00101010" Here we've requested the binary equivalent of the decimal value 42 in 8-bit binary which, as we've already established, outputs the binary value 00101010.
Binary what? Binary numbers? Binary stars? Binary fission?
170/2 = 85 R 0. Therefore binary number so far is 0.85/2 = 42 R 1. Therefore binary number so far is 10.42/2 = 21 R 0. Therefore binary number so far is 010.21/2 = 10 R 1. Therefore binary number so far is 1010.10/2 = 5 R 0. Therefore binary number so far is 01010.5/2 = 2 R 1. Therefore binary number so far is 101010.2/2 = 1 R 0. Therefore binary number so far is 0101010.1/2 = 0 R 1. Therefore binary number so far is 10101010.The integer portion of last division was 0 so for the decimal number 170, the binary equivalent is 10101010.