centroid
true
The Centroid
It is called the centroid.
Any triangle has 3 medians Another answer (depending on what you are looking for) is that a triangle has concurrent medians (which means all three medians intersect at a single point).
centroid
The Centroid
true
It is the centroid - the point at which the medians meet.
The Centroid
The point of concurrency of the medians of a triangle is called the centroid. It is the point where all three medians intersect each other. The centroid divides each median into two segments, with the segment closer to the vertex being twice as long as the other segment.
A point of concurrency is a point where three or more lines, segments, or rays intersect or meet. Common points of concurrency in geometry include the centroid, circumcenter, incenter, and orthocenter of a triangle.
the centroid. here are all the points of concurrency: perpendicular bisector- circumcenter altitudes- orthocenter angle bisector- incenter median- centroid hope that was helpful :)
The answer depends on what point of concurrency you are referring to. There are four segments you could be talking about in triangles. They intersect in different places in different triangles. Medians--segments from a vertex to the midpoint of the opposite side. In acute, right and obtuse triangles, the point of concurrency of the medians (centroid) is inside the triangle. Altitudes--perpendicular segments from a vertex to a line containing the opposite side. In an acute triangle, the point of concurrency of the altitudes (orthocenter) is inside the triangle, in a right triangle it is on the triangle and in an obtuse triangle it is outside the triangle. Perpendicular bisectors of sides--segments perpendicular to each side of the triangle that bisect each side. In an acute triangle, the point of concurrency of the perpendicular bisectors (circumcenter) is inside the triangle, in a right triangle it is on the triangle and in an obtuse triangle it is outside the triangle. Angle bisectors--segments from a vertex to the opposite side that bisect the angles at the vertices. In acute, right and obtuse triangles, the point of concurrency of the angle bisectors (incenter) is inside the triangle.
It is called the centroid.
In short, the orthocenter really has no purpose. There are 4 points of Concurrency in Triangles: 1) The Centroid - the point of concurrency where the 3 medians of a triangle meet. This point is also the triangle's center of gravity. 2) The Circumcenter - the point of concurrency where the perpendicular bisectors of all three sides of the triangle meet. This point is the center of the triangle's circumscribed circle. 3) The Incenter - the point of concurrency where the angle bisectors of all three angles of the triangle meet. Like the circumcenter, the incenter is the center of the inscribed circle of a triangle. 4) The Orthocenter - the point of concurrency where the 3 altitudes of a triangle meet. Unlike the other three points of concurrency, the orthocenter is only there to show that altitudes are concurrent. Thus, bringing me back to the initial statement.
Any triangle has 3 medians Another answer (depending on what you are looking for) is that a triangle has concurrent medians (which means all three medians intersect at a single point).