There are quadratic functions and irrational functions and fractional functions and exponential functions and also finding maxima and minima
Chat with our AI personalities
if my data followed to a special distribution, how can i calculate the critical value of k-s test in this case?
%%%fim1 is our image%%% [ r c ] = size(fim1); even=zeros(r,(c/2)); %first level decomposition %one even dimension for j = 1:1:r a=2; for k =1:1:(c/2) even(j,k)=fim1(j,a); a=a+2; end end %one odd dim odd=zeros(r,(c/2)); for j = 1:1:r a=1; for k =1:1:(c/2) odd(j,k)=fim1(j,a); a=a+2; end end [ lenr lenc ]=size(odd) ; %one dim haar for j = 1:1:lenr for k =1:1:lenc fhigh(j,k)=odd(j,k)-even(j,k); flow(j,k)=even(j,k)+floor(fhigh(j,k)/2); end end %2nd dimension [len2r len2c ]=size(flow); for j = 1:1:(len2c) a=2; for k =1:1:(len2r/2) %even separation of one dim leven(k,j)=flow(a,j); heven(k,j)=fhigh(a,j); a=a+2; end end %odd separtion of one dim for j = 1:1:(len2c) a=1; for k =1:1:(len2r/2) lodd(k,j)=flow(a,j); hodd(k,j)=fhigh(a,j); a=a+2; end end %2d haar [ len12r len12c ]=size(lodd) ; for j = 1:1:len12r for k =1:1:len12c %2nd level hh f2lhigh(j,k)=lodd(j,k)-leven(j,k); %2nd level hl f2llow(j,k)=leven(j,k)+floor(f2lhigh(j,k)/2); %2nd level lh f2hhigh(j,k)=hodd(j,k)-heven(j,k); %2nd level ll f2hlow(j,k)=heven(j,k)+floor(f2hhigh(j,k)/2); end end % level=level-1;
1.f 2.u 3.c 4.k 5.y 6.o 7.u
k^2 + k = k^2 + k k^2 x k = k^3
The underlying principle is that the square of an independent Normal variable has a chi-square distribution with one degree of freedom (df). A second principle is that the sum of k independent chi-squares variables is a chi-squared variable with k df.