ordinary differential equation is obtained only one independent variable and partial differential equation is obtained more than one variable.
There is no answer since the terms of an equation can be written in any order (when in ordinary mathematical domains).
An ordinary differential equation is an equation relating the derivatives of a function to the function and the variable being differentiated against. For example, dy/dx=y+x would be an ordinary differential equation. This is as opposed to a partial differential equation which relates the partial derivatives of a function to the partial variables such as d²u/dx²=-d²u/dt². In a linear ordinary differential equation, the various derivatives never get multiplied together, but they can get multiplied by the variable. For example, d²y/dx²+x*dy/dx=x would be a linear ordinary differential equation. A nonlinear ordinary differential equation does not have this restriction and lets you chain as many derivatives together as you want. For example, d²y/dx² * dy/dx * y = x would be a perfectly valid example
The global solution of an ordinary differential equation (ODE) is a solution of which there are no extensions; i.e. you can't add a solution to the global solution to make it more general, the global solution is as general as it gets.
The abbreviation PDE stands for partial differential equation. This is different from an ordinary differential equation in that it contains multivariable functions rather than single variables.
ordinary differential equation is obtained only one independent variable and partial differential equation is obtained more than one variable.
There is no answer since the terms of an equation can be written in any order (when in ordinary mathematical domains).
An ordinary differential equation is an equation relating the derivatives of a function to the function and the variable being differentiated against. For example, dy/dx=y+x would be an ordinary differential equation. This is as opposed to a partial differential equation which relates the partial derivatives of a function to the partial variables such as d²u/dx²=-d²u/dt². In a linear ordinary differential equation, the various derivatives never get multiplied together, but they can get multiplied by the variable. For example, d²y/dx²+x*dy/dx=x would be a linear ordinary differential equation. A nonlinear ordinary differential equation does not have this restriction and lets you chain as many derivatives together as you want. For example, d²y/dx² * dy/dx * y = x would be a perfectly valid example
An ordinary differential equation (ODE) has only derivatives of one variable.
fuzzy differential equation (FDEs) taken account the information about the behavior of a dynamical system which is uncertainty in order to obtain a more realistic and flexible model. So, we have r as the fuzzy number in the equation whereas ordinary differential equations do not have the fuzzy number.
it has two types
The global solution of an ordinary differential equation (ODE) is a solution of which there are no extensions; i.e. you can't add a solution to the global solution to make it more general, the global solution is as general as it gets.
The abbreviation PDE stands for partial differential equation. This is different from an ordinary differential equation in that it contains multivariable functions rather than single variables.
m + H2O => mOH + H (or 2m + 2H2O => 2mOH + H2)
exact differential equation, is a type of differential equation that can be solved directly with out the use of any other special techniques in the subject. A first order differential equation is called exact differential equation ,if it is the result of a simple differentiation. A exact differential equation the general form P(x,y) y'+Q(x,y)=0Differential equation is a mathematical equation. These equation have some fractions and variables with its derivatives.
510,000 is the answer. you have to use the equation based on a chart. for this i used 113,900+(.34(1,500,000-335,000))
Applications of ordinary differential equations are commonly used in the engineering field. The equation is used to find the relationship between the various parts of a bridge, as seen in the Euler-Bernoulli Beam Theory.