Pi is an irrational number which means that it has a never-ending number of digits following the decimal point. Currently we know pi to 5,000,000,000,000 decimal places. To 3 decimal places it is 3.142 which is normally fine for most maths or physics uses.
Answer
3.
1415926535897932384626433832795028841971693993751058209 7494459230781640628620899862803482534211706798214808651 3282306647093844609550582231725359408128481117450284102 7019385211055596446229489549303819644288109756659334461 2847564823378678316527120190914564856692346034861045432 6648213393607260249141273724587006606315588174881520920 9628292540917153643678925903600113305305488204665213841 4695194151160943305727036575959195309218611738193261179 3105118548074462379962749567351885752724891227938183011 9491298336733624406566430860213949463952247371907021798 6094370277053921717629317675238467481846766940513200056 8127145263560827785771342757789609173637178721468440901 2249534301465495853710507922796892589235420199561121290 2196086403441815981362977477130996051870721134999999837 2978049951059731732816096318595024459455346908302642522 3082533446850352619311881710100031378387528865875332083 8142061717766914730359825349042875546873115956286388235 3787593751957781857780532171226806613001927876611195909 2164201989380952572010654858632788659361533818279682303 0195203530185296899577362259941389124972177528347913151 5574857242454150695950829533116861727855889075098381754 6374649393192550604009277016711390098488240128583616035 6370766010471018194295559619894676783744944825537977472 6847104047534646208046684259069491293313677028989152104 7521620569660240580381501935112533824300355876402474964 7326391419927260426992279678235478163600934172164121992 4586315030286182974555706749838505494588586926995690927 2107975093029553211653449872027559602364806654991198818 3479775356636980742654252786255181841757467289097777279 3800081647060016145249192173217214772350141441973568548 1613611573525521334757418494684385233239073941433345477 6241686251898356948556209921922218427255025425688767179 0494601653466804988627232791786085784383827967976681454 1009538837863609506800642251252051173929848960841284886 2694560424196528502221066118630674427862203919494504712 3713786960956364371917287467764657573962413890865832645 9958133904780275900994657640789512694683983525957098258 2262052248940772671947826848260147699090264013639443745 5305068203496252451749399651431429809190659250937221696 4615157098583874105978859597729754989301617539284681382 6868386894277415599185592524595395943104997252468084598 7273644695848653836736222626099124608051243884390451244 1365497627807977156914359977001296160894416948685558484 0635342207222582848864815845602850601684273945226746767 8895252138522549954666727823986456596116354886230577456 4980355936345681743241125150760694794510965960940252288 7971089314566913686722874894056010150330861792868092087 4760917824938589009714909675985261365549781893129784821 6829989487226588048575640142704775551323796414515237462 3436454285844479526586782105114135473573952311342716610 2135969536231442952484937187110145765403590279934403742 0073105785390621983874478084784896833214457138687519435 0643021845319104848100537061468067491927819119793995206 1419663428754440643745123718192179998391015919561814675 1426912397489409071864942319615679452080951465502252316 0388193014209376213785595663893778708303906979207734672 2182562599661501421503068038447734549202605414665925201 4974428507325186660021324340881907104863317346496514539 0579626856100550810665879699816357473638405257145910289 7064140110971206280439039759515677157700420337869936007 2305587631763594218731251471205329281918261861258673215 7919841484882916447060957527069572209175671167229109816 9091528017350671274858322287183520935396572512108357915 1369882091444210067510334671103141267111369908658516398 3150197016515116851714376576183515565088490998985998238 7345528331635507647918535893226185489632132933089857064 2046752590709154814165498594616371802709819943099244889 5757128289059232332609729971208443357326548938239119325 9746366730583604142813883032038249037589852437441702913 2765618093773444030707469211201913020330380197621101100 4492932151608424448596376698389522868478312355265821314 4957685726243344189303968642624341077322697802807318915 4411010446823252716201052652272111660396665573092547110 5578537634668206531098965269186205647693125705863566201 8558100729360659876486117910453348850346113657686753249 4416680396265797877185560845529654126654085306143444318 5867697514566140680070023787765913440171274947042056223 0538994561314071127000407854733269939081454664645880797 2708266830634328587856983052358089330657574067954571637 7525420211495576158140025012622859413021647155097925923 0990796547376125517656751357517829666454779174501129961 4890304639947132962107340437518957359614589019389713111 7904297828564750320319869151402870808599048010941214722 1317947647772622414254854540332157185306142288137585043 0633217518297986622371721591607716692547487389866549494 5011465406284336639379003976926567214638530673609657120 9180763832716641627488880078692560290228472104031721186 0820419000422966171196377921337575114959501566049631862 9472654736425230817703675159067350235072835405670403867 4351362222477158915049530984448933309634087807693259939 7805419341447377441842631298608099888687413260472156951 6239658645730216315981931951673538129741677294786724229 2465436680098067692823828068996400482435403701416314965 8979409243237896907069779422362508221688957383798623001 5937764716512289357860158816175578297352334460428151262 7203734314653197777416031990665541876397929334419521541 3418994854447345673831624993419131814809277771038638773 4317720754565453220777092120190516609628049092636019759 8828161332316663652861932668633606273567630354477628035 0450777235547105859548702790814356240145171806246436267 9456127531813407833033625423278394497538243720583531147 7119926063813346776879695970309833913077109870408591337 4641442822772634659470474587847787201927715280731767907 7071572134447306057007334924369311383504931631284042512 1925651798069411352801314701304781643788518529092854520 1165839341965621349143415956258658655705526904965209858 0338507224264829397285847831630577775606888764462482468 5792603953527734803048029005876075825104747091643961362 6760449256274204208320856611906254543372131535958450687 7246029016187667952406163425225771954291629919306455377 9914037340432875262888963995879475729174642635745525407 9091451357111369410911939325191076020825202618798531887 7058429725916778131496990090192116971737278476847268608
The 1,000th decimal of Pi is 9.
Pi is an irrational number and it is 3.14 to two decimal places
Pi has an infinite number of decimal places
There is no finite-length decimal number for pi. The decimal for pi goes on until infinity! The most commonly used approximation is 3.14
Pi is an irrational number
Yes, pi is a decimal. (3.141596)
The 500th decimal of Pi is 2.
the decimal form of pi is 3.14
The 1,000th decimal of Pi is 9.
There is only one decimal point in Pi
Pi to the 8th decimal place is 3.14159265.
There is no particular significance in the 16th decimal digit of pi.
Pi is an irrational number and it is 3.14 to two decimal places
Pi has an infinite number of decimal places
There is no finite-length decimal number for pi. The decimal for pi goes on until infinity! The most commonly used approximation is 3.14
The value of pi to 25 decimal places is 3.14159265358979323846264. Pi is an irrational number, meaning it cannot be expressed as a simple fraction and its decimal representation goes on infinitely without repeating. It is commonly approximated as 3.14 for practical purposes, but for more precise calculations, more decimal places of pi are often used.
It is: pi = 3.14 in two decimal places