To calculate the compound amount for a deposit of $6,980 at an interest rate of 11% compounded semiannually for 8 years, you can use the formula ( A = P(1 + \frac{r}{n})^{nt} ), where ( P ) is the principal amount, ( r ) is the annual interest rate, ( n ) is the number of times interest is compounded per year, and ( t ) is the number of years. Plugging in the values: ( A = 6980(1 + \frac{0.11}{2})^{2 \times 8} ). This results in approximately $16,177.49 as the compound amount after 8 years.
I haven't gotten the answer to that test question either....the choices seem wrong
The annual equivalent rate is 15.5625%. The amount invested is irrelevant to calculation of the equivalent rate.
To calculate the future value of an investment compounded semiannually, you can use the formula: [ A = P \left(1 + \frac{r}{n}\right)^{nt} ] where: ( A ) is the amount of money accumulated after n years, including interest. ( P ) is the principal amount (5000). ( r ) is the annual interest rate (0.06). ( n ) is the number of times that interest is compounded per year (2 for semiannual). ( t ) is the number of years the money is invested (10). Plugging in the values: [ A = 5000 \left(1 + \frac{0.06}{2}\right)^{2 \times 10} = 5000 \left(1 + 0.03\right)^{20} = 5000 \left(1.03\right)^{20} \approx 5000 \times 1.8061 \approx 9030.50 ] Thus, $5000 would grow to approximately $9030.50 in ten years at 6 percent compounded semiannually.
To calculate the future value of $20,000 in 20 years with a 7% interest rate compounded semiannually, you can use the formula for compound interest: [ A = P \left(1 + \frac{r}{n}\right)^{nt} ] Where: ( A ) is the amount of money accumulated after n years, including interest. ( P ) is the principal amount ($20,000). ( r ) is the annual interest rate (0.07). ( n ) is the number of times interest is compounded per year (2 for semiannual). ( t ) is the number of years the money is invested (20). Plugging in the values: [ A = 20000 \left(1 + \frac{0.07}{2}\right)^{2 \times 20} ] Calculating this gives approximately $76,124.74.
The rate is 15.56%. The amount invested is irrelevant in this calculation.
Semiannually over two years is equivalent to 4 periods. If the interest is 12% every 6 months, then the amount of interest is It is 8000*[(1.12)4 -1] =4588.15
I haven't gotten the answer to that test question either....the choices seem wrong
The annual equivalent rate is 15.5625%. The amount invested is irrelevant to calculation of the equivalent rate.
You should have 5976.51 provided the fractional units of interest earned are also rolled into the capital.
$44,440.71
To calculate the future value of an investment compounded semiannually, you can use the formula: [ A = P \left(1 + \frac{r}{n}\right)^{nt} ] where: ( A ) is the amount of money accumulated after n years, including interest. ( P ) is the principal amount (5000). ( r ) is the annual interest rate (0.06). ( n ) is the number of times that interest is compounded per year (2 for semiannual). ( t ) is the number of years the money is invested (10). Plugging in the values: [ A = 5000 \left(1 + \frac{0.06}{2}\right)^{2 \times 10} = 5000 \left(1 + 0.03\right)^{20} = 5000 \left(1.03\right)^{20} \approx 5000 \times 1.8061 \approx 9030.50 ] Thus, $5000 would grow to approximately $9030.50 in ten years at 6 percent compounded semiannually.
$491
The rate is 15.56%. The amount invested is irrelevant in this calculation.
The future value of $600 invested for 5 years at an 8% interest rate compounded semiannually can be calculated using the formula FV = P(1 + r/n)^(nt), where FV is the future value, P is the principal amount, r is the interest rate, n is the number of times the interest is compounded per year, and t is the number of years. In this case, P = $600, r = 8% = 0.08, n = 2 (since interest is compounded semiannually), and t = 5. Plugging these values into the formula, we get FV = 600(1 + 0.08/2)^(2*5) = $925.12. Therefore, the future value of the investment after 5 years would be $925.12.
If you opened a savings account and deposited 5000 in a six percent interest rate compounded daily, then the amount in the account after 180 days will be 5148.
No. The loss would normally be compounded so it would amount to 71.8%
I can give you several sentences.Your back-talk only compounded your trouble, young man!He compounded the amount of work he'd have to do.The pharmacist compounded a special lotion for her rash.