answersLogoWhite

0

The matrices must have the same dimensions.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: What is the condition for the addition of matrices?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How do you add fractions in matrices?

The usual rules of addition of fractions apply.


Is the set of all 2x2 invertible matrices a subspace of all 2x2 matrices?

I assume since you're asking if 2x2 invertible matrices are a "subspace" that you are considering the set of all 2x2 matrices as a vector space (which it certainly is). In order for the set of 2x2 invertible matrices to be a subspace of the set of all 2x2 matrices, it must be closed under addition and scalar multiplication. A 2x2 matrix is invertible if and only if its determinant is nonzero. When multiplied by a scalar (let's call it c), the determinant of a 2x2 matrix will be multiplied by c^2 since the determinant is linear in each row (two rows -> two factors of c). If the determinant was nonzero to begin with c^2 times the determinant will be nonzero, so an invertible matrix multiplied by a scalar will remain invertible. Therefore the set of all 2x2 invertible matrices is closed under scalar multiplication. However, this set is not closed under addition. Consider the matrices {[1 0], [0 1]} and {[-1 0], [0 -1]}. Both are invertible (in this case, they are both their own inverses). However, their sum is {[0 0], [0 0]}, which is not invertible because its determinant is 0. In conclusion, the set of invertible 2x2 matrices is not a subspace of the set of all 2x2 matrices because it is not closed under addition.


What would be the result if you add matrices B plus A instead A plus B?

It would be no different. Matrix addition is Abelian or commutative. Matrix mutiplication is not.


Do all matrices have determinant?

Only square matrices have a determinant


Under what condition is the product of skew-symmetric matrices skew-symmetric?

I could be wrong but I do not believe that it is possible other than for the null matrix.