no. its an exponential with a vertical zero axis
A polynomial equation of order >1 that is, where the power of the variable is greater than 1 is a non linear function. A transcendental function is one that cannot be expressed as a finite number of algebaraic operations (addition, multiplication, roots). The exponential and trigonometric functions (and their inverses) are examples.
I'm not sure how you managed to get your equation into a table form. So perhaps try multiply each pronumeral by an exponential of the index of the third pronumeral cow
No, the equation y = 102x is not exponential. An exponential function is of the form y = a * b^x, where a and b are constants. In this case, the equation y = 102x is a linear function, as it represents a straight line with a slope of 102 and no exponential growth or decay.
If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.
You find out if a problem is linear or exponential by looking at the degree or the highest power; if the degree or the highest power is 1 or 0, the equation is linear. But if the degree is higher than 1 or lower than 0, the equation is exponential.
no. its an exponential with a vertical zero axis
If you mean y = 2^x, then no, it is not a linear equation. This is an exponential equation. The graph of this exponential equation would start out near zero on the left-hand side (there is a horizontal asymptote at y = 0) and would gradually increase as you move to the right: overall, it has a curved shaped. If you mean y = 2x, then yes, it is a linear equation.
A linear equation, when plotted, must be a straight line. Such a restriction does not apply to a line graph.y = ax2 + bx +c, where a is non-zero gives a line graph in the shape of a parabola. It is a quadratic graph, not linear. Similarly, there are line graphs for other polynomials, power or exponential functions, logarithmic or trigonometric functions, or any combination of them.
A linear equation has the form of mx + b, while a quadratic equation's form is ax2+bx+c. Also, a linear equation's graph forms a line, while a quadratic equation's graph forms a parabola.
A polynomial equation of order >1 that is, where the power of the variable is greater than 1 is a non linear function. A transcendental function is one that cannot be expressed as a finite number of algebaraic operations (addition, multiplication, roots). The exponential and trigonometric functions (and their inverses) are examples.
is the relationship linear or exponential
This is a linear equation. This is because the x term is only raised to the power one if it had contained an x^2 phrase it would have been quadratin, and if it had contained an n^x term it would have been exponential.
I'm not sure how you managed to get your equation into a table form. So perhaps try multiply each pronumeral by an exponential of the index of the third pronumeral cow
No, the equation y = 102x is not exponential. An exponential function is of the form y = a * b^x, where a and b are constants. In this case, the equation y = 102x is a linear function, as it represents a straight line with a slope of 102 and no exponential growth or decay.
If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.If two variables are related, then the simplest relationship between them is a linear one. The linear equation expresses such a relationship.
The linear function increases by the same number each step. The exponential function increases more each step. (1,1),(2,2),(3,3) etc (1,1).(2,4),(3,9),(4,16), etc see how the second one increases a lot?