fundamental difference between a polynomial function and an exponential function?
Ans: A natural log function ALWAYS has base e ( e is the irrational number that is the sum of the infinite series 2 + 1 / 2! + 1 /3! + 1 /4! + . . . )
y = ax, where a is some constant, is an exponential function in x y = xa, where a is some constant, is a power function in x If a > 1 then the exponential will be greater than the power for x > a
The linear function increases by the same number each step. The exponential function increases more each step. (1,1),(2,2),(3,3) etc (1,1).(2,4),(3,9),(4,16), etc see how the second one increases a lot?
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
fundamental difference between a polynomial function and an exponential function?
Exponential and logarithmic functions are inverses of each other.
Exponential and logarithmic functions are different in so far as each is interchangeable with the other depending on how the numbers in a problem are expressed. It is simple to translate exponential equations into logarithmic functions with the aid of certain principles.
Ans: A natural log function ALWAYS has base e ( e is the irrational number that is the sum of the infinite series 2 + 1 / 2! + 1 /3! + 1 /4! + . . . )
exponential decay
y = ax, where a is some constant, is an exponential function in x y = xa, where a is some constant, is a power function in x If a > 1 then the exponential will be greater than the power for x > a
The linear function increases by the same number each step. The exponential function increases more each step. (1,1),(2,2),(3,3) etc (1,1).(2,4),(3,9),(4,16), etc see how the second one increases a lot?
A linear function grows ( or shrinks) at a constant rate called its slope.An exponential function grows ( or shrinks) at a rate which increases(or decreases)over time. From a practical standpoint linear growth (or shrinkage) is simple and predictable. Exponential growth is essentially out of control and unsustainableand exponential decay soon becomes negligible.if y=az + b then y is a linear function of z. If y=aebz then y is an exponential function of z. If y= acbz then y is still an exponential function of z because you can substitute c=ek (so that k=logec) to give you y=aekbz .
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
Here's logarithmic form: 1 log ^ 10 Now here's the same thing in exponential form: 10^1 So basically it's just two different ways of writing the same thing. Remember that log is always base "10" unless otherwise specified
Power functions are functions of the form f(x) = ax^n, where a and n are constants and n is a real number. Exponential functions are functions of the form f(x) = a^x, where a is a constant and x is a real number. The key difference is that in power functions, the variable x is raised to a constant exponent, while in exponential functions, a constant base is raised to the variable x. Additionally, exponential functions grow at a faster rate compared to power functions as x increases.
look in your textbook