The equation to calculate an object's gravitation potential energy is:
PE=MGH
where:
PE is gravitational potential energy
M is the objects mass
G is the acceleration due to the gravitational pull of the Earth on its surface ( 9.8 m/s2)
H is the height from the location that would give it zero potentional energy (generally the ground)
Chat with our AI personalities
The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.
With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.
You need to have a weight and the mass of an object then you use the formula f=w=mg
it is conventional to define gravitational potential energy (GPE) of object A to be 0 when the object is free from the gravitational field of object B (i.e. at a infinite distance away) As the objects get closer together, the GPE decreases, thus is less than 0. Therefore the GPE of any object normally has a negative value (however it all just depends on where you define to be the point at which the object has 0 GPE)
The product of two masses is not a particularly meaningful concept. It is a component in calculating the gravitational force between two objects with those masses, but by itself it makes no sense. Well said! The unit [kg^2] has little meaning on its own.