The answer is in the question! 5 Hz
Also, a wavelength cannot be 5 cycles - wrong units.
I've got no idea what a "5 cycle wavelength" is. However, I would just apply this formula: v = fλ, where v is the velocity (speed in m/s) of the wave, f is the frequency (in hertz), and λ is the wavelength (in m).
The product of (wavelength x frequency) is the wave's speed.
Wavelength = 1/frequency. If you double the frequency, the wavelength drops to half.
The speed of any wave is the product of (wavelength) x (frequency) .
frequency = speed of wave / wavelength so if speed is constant then frequency varies inversely with wavelength
I've got no idea what a "5 cycle wavelength" is. However, I would just apply this formula: v = fλ, where v is the velocity (speed in m/s) of the wave, f is the frequency (in hertz), and λ is the wavelength (in m).
If the frequency of a wave is halved, the wavelength would double. This is because the speed of the wave remains constant, so by halving the frequency (which is the number of wave cycles per unit time), each wave cycle now covers a longer distance, resulting in a longer wavelength.
You can calculate a wave's frequency by dividing the speed of the wave by its wavelength. The formula is: frequency = speed of wave / wavelength.
Frequency and wavelength are inversely related. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. This relationship is described by the formula: speed = frequency x wavelength.
The wave speed is directly proportional to both the wavelength and frequency of a wave. This relationship is described by the equation speed = frequency × wavelength. In other words, as the frequency or wavelength of a wave increases, the wave speed will also increase.
To find the frequency of a wave using its wavelength, you can use the formula: frequency speed of the wave / wavelength. The speed of the wave is a constant value, so you can divide the speed by the wavelength to calculate the frequency.
The amplitude of a wave does not affect its wavelength as wavelength is determined by the speed of the wave and its frequency. Frequency and wavelength are inversely proportional; as frequency increases, wavelength decreases, and vice versa. This relationship is expressed mathematically as wavelength = speed of the wave / frequency.
You can decrease the wavelength of a transverse wave by increasing the frequency of the wave. This is because wavelength and frequency are inversely proportional in a wave, so increasing the frequency will result in a shorter wavelength.
To double the wavelength of a wave, you need to decrease its frequency by half. Wavelength and frequency are inversely proportional - as wavelength increases, frequency decreases, so doubling the wavelength requires halving the frequency. This change in wavelength can affect the characteristics of the wave, such as its speed and energy.
The frequency of a wave and its wavelength are inversely related. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa.
The relationship between the frequency of a wave and its wavelength can be described by the formula: frequency speed of wave / wavelength. This means that as the wavelength of a wave decreases, its frequency increases, and vice versa.
frequency of wave is inversely proportional to wavelength