Not every relation is a function. But every function is a relation. Function is just a part of relation.
The cubic function.
Range
A formula or graph are two ways to describe a math function. How a math function is described depends on the domain of the function or the complexity of the function.
The Mandelbrot graph is generated iteratively and so is a function of a function of a function ... and in that sense it is a composite function.
No, the nucleolus is not found in all cells. It is a distinct structure within the nucleus of eukaryotic cells and is responsible for producing ribosomal RNA and assembling ribosomes. Prokaryotic cells, which lack a nucleus, do not contain a nucleolus.
The nucleoid (meaning nucleus-like) is an irregularly-shaped region within the cell of prokaryotes which has nuclear material without a nuclear membrane and where the genetic material is localized. The genome of prokaryotic organisms generally is a circular, double-stranded piece of DNA, of which multiple copies may exist at any time. The length of a genome widely varies, but generally is at least a few million base pairs. Storage of the genome within a nucleoid can be contrasted against that within eukaryotes, where the genome is packed into chromatin and sequestered within a membrane-enclosed organelle called the nucleus.A genophore is the DNA of a prokaryote. This is commonly referred to as a prokaryotic chromosome. The term chromosome is misleading for a genophore because the genophore lacks chromatin. The genophore is compacted through a mechanism known as supercoiling, whereas a chromosome is compacted via chromatin. The genophore is circular in most prokaryotes, and linear in very few. The circular nature of the genophore allows replication to occur without telomeres. Genophores are generally of a much smaller size than Eukaryotic chromosomes. A genophore of a true organism can be as small as 580,073 base pairs (Mycoplasma genitalium). Many eukaryotes (such as plants and animals) carry genophores in organelles such as mitochondria and chloroplasts. These organelles are very similar to true prokaryotes.VisualizationThe nucleoid can be clearly visualized on an electron micrograph at high magnification, where, although its appearance may differ, it is clearly visible against the cytosol. Sometimes even strands of what is thought to be DNA are visible. By staining with the Feulgen stain, which specifically stains DNA, the nucleoid can also be seen under a light microscope. The DNA-intercalating stains DAPI and ethidium bromide are widely used for fluorescence microscopy of nucleoids.
The nucleoid (meaning nucleus-like) is an irregularly-shaped region within the cell of prokaryotes which has nuclear material without a nuclear membrane and where the genetic material is localized. The genome of prokaryotic organisms generally is a circular, double-stranded piece of DNA, of which multiple copies may exist at any time. The length of a genome widely varies, but generally is at least a few million base pairs. Storage of the genome within a nucleoid can be contrasted against that within eukaryotes, where the genome is packed into chromatin and sequestered within a membrane-enclosed organelle called the nucleus.A genophore is the DNA of a prokaryote. This is commonly referred to as a prokaryotic chromosome. The term chromosome is misleading for a genophore because the genophore lacks chromatin. The genophore is compacted through a mechanism known as supercoiling, whereas a chromosome is compacted via chromatin. The genophore is circular in most prokaryotes, and linear in very few. The circular nature of the genophore allows replication to occur without telomeres. Genophores are generally of a much smaller size than Eukaryotic chromosomes. A genophore of a true organism can be as small as 580,073 base pairs (Mycoplasma genitalium). Many eukaryotes (such as plants and animals) carry genophores in organelles such as mitochondria and chloroplasts. These organelles are very similar to true prokaryotes.VisualizationThe nucleoid can be clearly visualized on an electron micrograph at high magnification, where, although its appearance may differ, it is clearly visible against the cytosol. Sometimes even strands of what is thought to be DNA are visible. By staining with the Feulgen stain, which specifically stains DNA, the nucleoid can also be seen under a light microscope. The DNA-intercalating stains DAPI and ethidium bromide are widely used for fluorescence microscopy of nucleoids. CompositionExperimental evidence suggests that the nucleoid is largely composed of DNA, about 60%, with a small amount of RNA and protein. The latter two constituents are likely to be mainly messenger RNA and the transcription factor proteins found regulating the bacterial genome. Proteins helping to maintain the supercoiled structure of the nucleic acid are known as nucleoid proteinsor nucleoid-associated proteins and are distinct from histones of eukaryotic nuclei. In contrast to histones, the DNA-binding proteins of the nucleoid do not form nucleosomes, in which DNA is wrapped around a protein core. Instead, these proteins often use other mechanisms to promote compaction such as DNA bending or DNA-DNA bridging.
The nucleoid (meaning nucleus-like) is an irregularly-shaped region within the cell of prokaryotes which has nuclear material without a nuclear membrane and where the genetic material is localized. The genome of prokaryotic organisms generally is a circular, double-stranded piece of DNA, of which multiple copies may exist at any time. The length of a genome widely varies, but generally is at least a few million base pairs. Storage of the genome within a nucleoid can be contrasted against that within eukaryotes, where the genome is packed into chromatin and sequestered within a membrane-enclosed organelle called the nucleus.A genophore is the DNA of a prokaryote. This is commonly referred to as a prokaryotic chromosome. The term chromosome is misleading for a genophore because the genophore lacks chromatin. The genophore is compacted through a mechanism known as supercoiling, whereas a chromosome is compacted via chromatin. The genophore is circular in most prokaryotes, and linear in very few. The circular nature of the genophore allows replication to occur without telomeres. Genophores are generally of a much smaller size than Eukaryotic chromosomes. A genophore of a true organism can be as small as 580,073 base pairs (Mycoplasma genitalium). Many eukaryotes (such as plants and animals) carry genophores in organelles such as mitochondria and chloroplasts. These organelles are very similar to true prokaryotes.VisualizationThe nucleoid can be clearly visualized on an electron micrograph at high magnification, where, although its appearance may differ, it is clearly visible against the cytosol. Sometimes even strands of what is thought to be DNA are visible. By staining with the Feulgen stain, which specifically stains DNA, the nucleoid can also be seen under a light microscope. The DNA-intercalating stains DAPI and ethidium bromide are widely used for fluorescence microscopy of nucleoids. CompositionExperimental evidence suggests that the nucleoid is largely composed of DNA, about 60%, with a small amount of RNA and protein. The latter two constituents are likely to be mainly messenger RNA and the transcription factor proteins found regulating the bacterial genome. Proteins helping to maintain the supercoiled structure of the nucleic acid are known as nucleoid proteinsor nucleoid-associated proteins and are distinct from histones of eukaryotic nuclei. In contrast to histones, the DNA-binding proteins of the nucleoid do not form nucleosomes, in which DNA is wrapped around a protein core. Instead, these proteins often use other mechanisms to promote compaction such as DNA bending or DNA-DNA bridging.
The structure that contains genetic information in a bacterial cell is called the nucleoid. It is not surrounded by a nuclear membrane like in eukaryotic cells but contains the cell's DNA in a region of the cytoplasm.
The structure of a nucleosome is a segment of DNA wound in sequence around eight histone protein cores. This looks much like thread wound around a spool. A nucleosome is the basic unit of DNA packaging in eukaryotes.
The nucleoid is a region of cytoplasm where the chromosomal DNA is located. It is not a membrane bound nucleus, but simply an area of the cytoplasm where the strands of DNA are found. Most bacteria have a single, circular chromosome that is responsible for replication, although a few species do have two or more. Smaller circular auxiliary DNA strands, called plasmids, are also found in the cytoplasm.
Function
The parent function of the exponential function is ax
Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.Such a function does not exist for English. A function call BAHTTEXT will do it for the Thai language.
The IF function is the main function to do it and you can also use other logical functions, like the AND function, the OR function or the NOT function.
A __________ function takes the exponential function's output and returns the exponential function's input.