The molecular geometry of H3O+ is Trigonal Pyramidal because it has 3 bonding pairs and 1 nonbonding pair (lone pair)
The molecular geometry is octahedral.
The molecular geometry of C2H2Br2 is trigonal planar.The molecular geometry of C2H2Br2 is trigonal planar.
The molecular geometry of secl2 is BENT.
See-saw is the molecular geometry, and trigonal bi-pyramidal is the orbital geometry.
Molecular geometry is tetrahedral has no lone pairs
H3O: Trigonal pyramidal CO3^2-: Trigonal planar SF6: Octahedral
The ion hydronium has a pyramidal form, H atoms forming the base.
The molecular geometry is octahedral.
The molecular geometry of C2H2Br2 is trigonal planar.The molecular geometry of C2H2Br2 is trigonal planar.
The molecular geometry of secl2 is BENT.
The molecular geometry of HClO is bent.
The molecular geometry of N2O2 is linear.
The molecular geometry of IF4- is square planar.
The molecular geometry of NHF2 is trigonal pyramidal.
See-saw is the molecular geometry, and trigonal bi-pyramidal is the orbital geometry.
The molecular geometry of SO2 is bent, and the electron pair geometry is trigonal planar.
Molecular geometry is tetrahedral has no lone pairs