answersLogoWhite

0

Points: (-4, 8) and (0, -2)

Slope: (8--2)/((-4-0) = -5/2

Perpendicular slope: 2/5

Midpoint: (-4+0)/2, (8-2)/2 = (-2, 3)

Equation: y-3 = 2/5(x--2)

Multiply all terms by 5: 5y-15 = 2(x--2) => 5y = 2x+19

Perpendicular bisector equation in its general form: 2x-5y+19 = 0

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the equation and its perpendicular bisector equation of the line whose end points are at -2 3 and 1 -1 on the Cartesian plane?

Points: (-2, 3) and (1, -1) Midpoint: (-0.5, 1) Slope: -4/3 Perpendicular slope: 4/3 Equation: 3y = -4x+1 Perpendicular bisector equation: 4y = 3x+5.5


What is the perpendicular bisector equation of the line whose end points are at s 2s and 3s 8s on the Cartesian plane?

Points: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular equation: y -5s = -1/3(x -2s) => 3y = -x +17s Perpendicular bisector equation in its general form: x +3y -17s = 0


What is the perpendicular bisector equation that meets the points of 7 3 and -6 1 on the Cartesian plane?

Points: (7, 3) and (-6, 1) Midpoint: (0.5, 2) Slope: 2/13 Perpendicular slope: -13/2 Perpendicular equation: y-2 =-13/2(x-0.5) => 2y-4 = -13x+6.5 => 2y = -13x+10.5 Therefore the perpendicular bisector equation is: 2y = -13x+10.5


What are the steps for finding the perpendicular bisect of a line segment?

To find the perpendicular bisector of a line segment, first, determine the midpoint of the segment by averaging the x-coordinates and y-coordinates of the endpoints. Next, calculate the slope of the line segment and find the negative reciprocal of that slope to get the slope of the perpendicular bisector. Then, use the midpoint and the new slope to write the equation of the perpendicular bisector in point-slope form. Finally, you can convert it to slope-intercept form if needed.


What is the perpendicular bisector equation of the line whose end points are at 3 5 and 7 11 on the Cartesian plane?

Points: (3, 5) and (7, 11) Midpoint: (5, 8) Slope: 3/2 Perpendicular slope: -2/3 Perpendicular equation: y-8=-2/3(x-5) => 3y-24=-2x+10 => 3y=-2x+34 Therefore the perpendicular bisector equation is: 3y = -2x+34

Related Questions

What is the equation and its perpendicular bisector equation of the line whose end points are at -2 3 and 1 -1 on the Cartesian plane?

Points: (-2, 3) and (1, -1) Midpoint: (-0.5, 1) Slope: -4/3 Perpendicular slope: 4/3 Equation: 3y = -4x+1 Perpendicular bisector equation: 4y = 3x+5.5


What is the perpendicular bisector equation of the line with end points of -1 4 and 3 8 on the Cartesian plane?

Points: (-1, 4) and (3, 8) Midpoint (1, 6) Slope: 1 Perpendicular slope: -1 Perpendicular bisector equation: y-6 = -1(x-1) => y = -x+7


What is the perpendicular bisector equation of the line joined by the points -2 5 and -8 -3 on the Cartesian plane?

Points: (-2, 5) and (-8, -3) Midpoint: (-5, 1) Slope: 4/3 Perpendicular slope: -3/4 Perpendicular equation: y-1 = -3/4(x--5) => 4y = -3x-11 Perpendicular bisector equation in its general form: 3x+4y+11 = 0


What is the perpendicular bisector equation of the line whose end points are at s 2s and 3s 8s on the Cartesian plane?

Points: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular equation: y -5s = -1/3(x -2s) => 3y = -x +17s Perpendicular bisector equation in its general form: x +3y -17s = 0


What is the perpendicular bisector equation of the line segment whose end points are at -2 4 and -4 8 on the Cartesian plane?

End points: (-2, 4) and (-4, 8) Midpoint: (-3, 6) Slope: -2 Perpendicular slope: 1/2 Perpendicular bisector equation: y -6 = 1/2(x--3) => y = 0.5x+7.5


What is the perpendicular bisector equation that meets the points of 7 3 and -6 1 on the Cartesian plane?

Points: (7, 3) and (-6, 1) Midpoint: (0.5, 2) Slope: 2/13 Perpendicular slope: -13/2 Perpendicular equation: y-2 =-13/2(x-0.5) => 2y-4 = -13x+6.5 => 2y = -13x+10.5 Therefore the perpendicular bisector equation is: 2y = -13x+10.5


What is the perpendicular bisector equation of the line segment whose endpoints are at -4 -10 and 8 -1 on the Cartesian plane?

Endpoints: (-4, -10) and (8, -1) Midpoint: (2, -5.5) Slope: 3/4 Perpendicular slope: -4/3 Perpendicular equation: y --5.5 = -4/3(x-2) => 3y = -4x -8.5 Perpendicular bisector equation in its general form: 4x+3y+8.5 = 0


What are the steps for finding the perpendicular bisect of a line segment?

To find the perpendicular bisector of a line segment, first, determine the midpoint of the segment by averaging the x-coordinates and y-coordinates of the endpoints. Next, calculate the slope of the line segment and find the negative reciprocal of that slope to get the slope of the perpendicular bisector. Then, use the midpoint and the new slope to write the equation of the perpendicular bisector in point-slope form. Finally, you can convert it to slope-intercept form if needed.


What is the perpendicular bisector equation of the line whose end points are at 3 5 and 7 7 on the Cartesian plane?

Endpoints: (3, 5) and (7,7) Midpoint: (5, 6) Slope: 1/2 Perpendicular slope: -2 Perpendicular bisector equation: y-6 = -2(x-5) => y = -2x+16


What is the perpendicular bisector equation of the line segment whose endpoints are at -7 -3 and -1 -4 on the Cartesian plane?

Endpoints: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: (-3--4)/(-7--1) = -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5


What is the perpendicular bisector equation of the line whose end points are at 3 5 and 7 11 on the Cartesian plane?

Points: (3, 5) and (7, 11) Midpoint: (5, 8) Slope: 3/2 Perpendicular slope: -2/3 Perpendicular equation: y-8=-2/3(x-5) => 3y-24=-2x+10 => 3y=-2x+34 Therefore the perpendicular bisector equation is: 3y = -2x+34


What is the perpendicular bisector equation of the straight line whose coordinates are s 2s and 3s 8s?

It works out in its general form as: x+3y-17s = 0