In pea plants, the round seed trait (R) is dominant over the wrinkled seed trait (r). If both parents are heterozygous (Rr), the possible offspring genotypes are RR, Rr, and rr, with a 75% chance of producing round seeds (RR or Rr) and a 25% chance of producing wrinkled seeds (rr). Therefore, there is a 75% possibility that two heterozygous parents would have an offspring that produces round seeds.
3:4 or 75%
When both parents are heterozygous for seed shape (Rr, where R is the allele for round seeds and r is the allele for wrinkled seeds), the probability of producing an offspring with round seeds can be determined using a Punnett square. The possible genotypes are RR, Rr, Rr, and rr. Thus, there are three combinations (RR and Rr) that result in round seeds out of four total combinations. Therefore, the probability of having an offspring with round seeds is 3 out of 4, or 75%.
The probability is 3/4 or 75%. If both parents are heterozygous for the seed shape trait (e.g., Rr), there is a 50% chance that each parent will pass on the dominant allele (R) for round seeds to the offspring. The probability of inheriting the dominant allele from both parents and producing round seeds is therefore (1/2) x (1/2) = 1/4 or 25%. Since there are two possible ways to inherit the dominant allele (from either parent), the total probability is 2 x (1/4) = 1/2 or 50%.
Heterozygous parents have the same odds of identical twins as the general population. Identical twins do not run in families and, therefore, twinning is not related to genetics. Comparisons among different ethnic groups rule out an ethnic cause-no difference. Only mother's age correlates with twinning: the older the mother, the greater the likelihood.
offspring will be produced in following AA :Aa:aa and is in the ratio of 1:2:1 so the probabiltiy is 50%
3:4 or 75%
It is a 75% chance that the seeds will be round.
There is a 25% chance that the offspring will exhibit polydactyly if both parents are heterozygous for the trait.
If both parents are heterozygous for seed shape (Rr), their offspring would have a 75% chance of producing round seeds (3 out of 4 possible combinations), assuming round seeds (R) are dominant over wrinkled seeds (r).
It can happen when both parents are a heterozygous
75% because the recessive and dominant genes are corresponding and in a Punnett square it takes over.
A cross between two homozygous parents will form a 100 percent chance of a heterozygous offspring. One homozygous parent must have the dominant allele, and the other must have the recessive allele. So, if the circumstances are correct, these characteristics will make for a 100 percent chance of a heterozygous offspring.
A purebred organism is the offspring of two homozygous parents, having either two dominant alleles, AA or two recessive alleles, aa. A hybrid is the offspring of two heterozygous parents, Aa.
There are two forms of Homozygous inheritance: Homozygous Dominant, and Homozygous Recessive. In order for two parents that are Homozygous to produce a Heterozygous offspring, one of them MUST be Homozygous Dominant, and the other MUST be Homozygous Recessive.
There is a 25% chance (1 in 4) that the offspring will be homozygous for the trait. This is because when both parents are heterozygous (Aa), they can pass on either the dominant allele (A) or the recessive allele (a) to their offspring, resulting in a 1 in 4 chance of the offspring receiving the recessive allele from both parents and becoming homozygous (aa) for that trait.
Both of the parents were heterozygous with the blonde hair allele, which is recessive. When there are two parents that are heterozygous, there is a 25% chance their offspring will get two of the recessive alleles. A punnett square can be useful when determining the different phenotypes and genotypes possible in offspring
They R pretty wierd!