The probability of two people's birthday being the same is actually more likely than many would think. The key thing is to note that it doesn't matter what the first person's birthday is. All we need to work out is the probability that the second person has a birthday on any specific day. This probability is 1/365.25
The probability that they were born on June 10th is 1/365.25. The probability that they were born on February 2nd is 1/365.25 and the probability that they were born on the same day as you is 1/365.25
The probability, over presidents of all organisations, through all of time, is 1.
The probability that two persons share the same birth date can be calculated using the concept of the birthday paradox. In a group of 23 people, there is a probability of approximately 50% that two individuals share the same birth date. This probability increases as the number of people in the group increases due to the increasing number of possible pairs to compare. The calculation involves considering the complementary probability of no one sharing a birthday and subtracting it from 1 to find the probability of at least one shared birthday.
Slightly more than 1 in 2.
1:30
A birthday attack is a method of code decryption which exploits the birthday paradox - that which explains that within a class of 30 students, there is an assumed probability of two sharing the same birthday of 70 percent.
Leaving aside leap years, the probability is 0.0137
His birthday is the same as mine! 12th October
His birthday is on the 30 of January same as mine berbatov is the best
The probability with 30 people is 0.7063 approx.
The probability, over presidents of all organisations, through all of time, is 1.
In a probability sample, each unit has the same probability of being included in the sample. Equivalently, given a sample size, each sample of that size from the population has the same probability of being selected. This is not true for non-probability sampling.
1/365 = 0.00274
February 27! same as mine :D
Nov 20th! The same as mine!
The key feature is that each sample of the given size has the same probability of being selected as the sample. Equivalently, each unit in the population has the same probability of being included in the sample.
I dont have the Same birthday as Justin but mine is March 8th.
The probability that two persons share the same birth date can be calculated using the concept of the birthday paradox. In a group of 23 people, there is a probability of approximately 50% that two individuals share the same birth date. This probability increases as the number of people in the group increases due to the increasing number of possible pairs to compare. The calculation involves considering the complementary probability of no one sharing a birthday and subtracting it from 1 to find the probability of at least one shared birthday.