Want this question answered?
Be notified when an answer is posted
The square of the product
-- The numerator of the product is the product of the numerators. -- The denominator of the product is the product of the denominators. -- The product is 35/48 , reduced or simplified if necessary and appropriate.
The product is 210
It is called the product
product
The substrate of phosphorylase is glycogen. Phosphorylase is an enzyme that catalyzes the breakdown of glycogen into glucose-1-phosphate, which can then be used by cells for energy production.
Activation, conversion from glycogen phosphorylase B to glycogen phosphorylase A
AMP is an inhibitor of glycogen phosphorylase.
Glycogen phosphorylase can not cleave the alpha-1,6-glycosidic bonds at glycogen branch points
the last step is ofcourse glycogen breakdown.......before that inactive glycogen phosphorylase-b is activated and phosphorylated to glycogen phosphorylase-a by the help of activated phosphorylase kinase........ ......phosphorylase kinase was activated by activated protien kinase..and activated protien kinase was activated by cyclic amp...........
Phosphatase is an enzyme that removes phosphate groups from molecules, while phosphorylase is an enzyme that adds phosphate groups to molecules. Phosphatase acts by hydrolyzing phosphate ester bonds, while phosphorylase catalyzes the transfer of a phosphate group from a donor molecule to a substrate molecule.
Chloroplasts and mitochondria both contain phosphorylase enzymes because these enzymes are involved in energy metabolism processes that occur in both organelles. Phosphorylase enzymes are responsible for catalyzing the breakdown of glycogen into glucose units in the cytoplasm, releasing energy in the form of ATP which is essential for cellular energy production.
Starch phosphorylase is primarily involved in starch degradation by catalyzing the conversion of starch to glucose. In vivo starch anabolism involves the synthesis of starch molecules from glucose, which is carried out by enzymes like starch synthase and starch branching enzyme. Therefore, starch phosphorylase is not directly involved in the biosynthesis of starch in living systems.
Phosphorylase and phosphatase are enzymes involved in regulating cellular processes by adding or removing phosphate groups from molecules. Phosphorylase adds phosphate groups to molecules, while phosphatase removes phosphate groups. This difference in function affects how these enzymes interact with other molecules and influence cellular activities.
Phosphorylase is an enzyme that adds a phosphate group to a molecule, typically to activate it. Phosphatase is an enzyme that removes a phosphate group from a molecule, usually to deactivate it or regulate its activity. Essentially, phosphorylase adds a phosphate group while phosphatase removes a phosphate group.
Phosphorylase is an enzyme that adds phosphate groups to molecules, while kinase is an enzyme that transfers phosphate groups from ATP to other molecules. In cellular signaling pathways, phosphorylase helps activate or deactivate proteins by adding phosphate groups, while kinase helps transmit signals by transferring phosphate groups.
Phosphatase, phosphorylase, and kinase are enzymes involved in cellular processes. Phosphatase removes phosphate groups from molecules, phosphorylase adds phosphate groups to molecules, and kinase transfers phosphate groups from ATP to other molecules. Each enzyme has a specific function and mechanism of action in regulating cellular activities.