answersLogoWhite

0

The period is independent of the mass.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Which factor affects the period of the pendulum?

The period of a pendulum is affected by the angle created by the swing of the pendulum, the length of the attachment to the mass, and the weight of the mass on the end of the pendulum.


What factors affect the period of a pendulum?

In a simple pendulum, with its entire mass concentrated at the end of a string, the period depends on the distance of the mass from the pivot point. A physical pendulum's period is affected by the distance of the centre-of-gravity of the pendulum arm to the pivot point, its mass and its moment of inertia about the pivot point. In real life the pendulum period can also be affected by air resistance, temperature changes etc.


Does the length of pendulum affect the period of vibration?

Yes. Given a constant for gravity, the period of the pendulum is a function of it's length to the center of mass. In a higher gravity, the period would be shorter for the same length of pendulum.


Does the period of simple pendulum depend on the mass of the bob?

Not in the theoretical world, in the practical world: just a very little. The period is determined primarily by the length of the pendulum. If the rod is not a very small fraction of the mass of the bob then the mass center of the rod will have to be taken into account when calculating the "length" of the pendulum.


How does the bob affects the period of a pendulum?

The period of a pendulum is totally un-affected by the mass of the bob.The time period of pendulum is given by the eqn.T=2*PIE*(l/g)1/2 ;l is the length of pendulum;g is the acceleration due to gravity.'l' is the length from the centre of suspension to the centre of gravity the bob.ie.the length of the pendulum depends on the centre of gravity of the bob,and hence the distribution of mass of the bob.

Related Questions

What is the relationship between mass and period in the context of physics?

In physics, the relationship between mass and period is described by the formula for the period of a pendulum, which is T 2(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. The mass of the pendulum does not directly affect the period of the pendulum, as long as the length and amplitude of the swing remain constant.


What happens to the period of a pendulum if you increase its mass?

Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.


Why does the mass of pendulum not affect its period?

The period of a pendulum is influenced by the length of the pendulum and the acceleration due to gravity. The mass of the pendulum does not affect the period because the force of gravity acts on the entire pendulum mass, causing it to accelerate at the same rate regardless of its mass. This means that the mass cancels out in the equation for the period of a pendulum.


What happen to period of pendulum when mass increase?

The period of a pendulum is not affected by the mass of the pendulum bob. The period depends only on the length of the pendulum and the acceleration due to gravity.


What happens when you double the mass of a pendulum?

Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.


Which factor affects the period of the pendulum?

The period of a pendulum is affected by the angle created by the swing of the pendulum, the length of the attachment to the mass, and the weight of the mass on the end of the pendulum.


What happen to the time period of pendulum if the mass of bob is changed?

The period of a pendulum is not affected by the mass of the bob. The period is determined by the length of the pendulum and the acceleration due to gravity. Changing the mass of the bob will not alter the time period of the pendulum's swing.


Why time period of simple pendulum is independent of mass?

The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.


Which variables must be controlled when determining the effect of mass on the period of the pendulum?

When determining the effect of mass on the period of a pendulum, you must control the length of the pendulum and the angle at which it is released. By keeping these variables constant, you can isolate the effect of mass on the period of the pendulum for a more accurate comparison.


WHAT IS the term for the mass at the end of a pendulum?

The term for the mass at the end of a pendulum is the "bob." The bob's weight affects the pendulum's period and oscillation behavior.


If the mass of bob of a simple pendulum is doubled its time period is what?

The time period of a simple pendulum is not affected by the mass of the bob, as long as the amplitude of the swing remains small. So, doubling the mass of the bob will not change the time period of the pendulum.


Is the pendulum mass has effect on periodic time?

Yes, the mass of the pendulum can affect the period of its swing. A heavier mass may have a longer period compared to a lighter mass due to changes in the pendulum's inertia and the force required to move it.