The period is independent of the mass.
Chat with our AI personalities
The period of a pendulum is affected by the angle created by the swing of the pendulum, the length of the attachment to the mass, and the weight of the mass on the end of the pendulum.
In a simple pendulum, with its entire mass concentrated at the end of a string, the period depends on the distance of the mass from the pivot point. A physical pendulum's period is affected by the distance of the centre-of-gravity of the pendulum arm to the pivot point, its mass and its moment of inertia about the pivot point. In real life the pendulum period can also be affected by air resistance, temperature changes etc.
Yes. Given a constant for gravity, the period of the pendulum is a function of it's length to the center of mass. In a higher gravity, the period would be shorter for the same length of pendulum.
Not in the theoretical world, in the practical world: just a very little. The period is determined primarily by the length of the pendulum. If the rod is not a very small fraction of the mass of the bob then the mass center of the rod will have to be taken into account when calculating the "length" of the pendulum.
The period of a pendulum is totally un-affected by the mass of the bob.The time period of pendulum is given by the eqn.T=2*PIE*(l/g)1/2 ;l is the length of pendulum;g is the acceleration due to gravity.'l' is the length from the centre of suspension to the centre of gravity the bob.ie.the length of the pendulum depends on the centre of gravity of the bob,and hence the distribution of mass of the bob.