answersLogoWhite

0

There is absolutely no relationship to what you've asked. I'm pretty sure you simply framed the question in the wrong way, but to literally answer your question... none. Zero relationship. There's no such thing. There is however a relationship between standard deviation and a CI, but a CI can in no shape way or form influence a standard deviation.

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga

Add your answer:

Earn +20 pts
Q: What is the relationship between Confidence Interval and decreased Standard Deviation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What happens to the confidence interval as the standard deviation of a distribution decreases?

It goes up.


How do you calculate confidence interval?

Confidence intervals may be calculated for any statistics, but the most common statistics for which CI's are computed are mean, proportion and standard deviation. I have include a link, which contains a worked out example for the confidence interval of a mean.


When population distribution is right skewed is the interval still valid?

You probably mean the confidence interval. When you construct a confidence interval it has a percentage coverage that is based on assumptions about the population distribution. If the population distribution is skewed there is reason to believe that (a) the statistics upon which the interval are based (namely the mean and standard deviation) might well be biased, and (b) the confidence interval will not accurately cover the population value as accurately or symmetrically as expected.


Why confidence interval useful?

Why confidence interval is useful


How do you calculate the parameter to a 99.9 confidence interval using mean and standard deviation?

Did you mean, "How do you calculate the 99.9 % confidence interval to a parameter using the mean and the standard deviation?" ? The parameter is the population mean μ. Let xbar and s denote the sample mean and the sample standard deviation. The formula for a 99.9% confidence limit for μ is xbar - 3.08 s / √n and xbar + 3.08 s / √n where xbar is the sample mean, n the sample size and s the sample standard deviation. 3.08 comes from a Normal probability table.