The scale factor of the dilation that transforms triangle PQR to triangle P'Q'R' can be determined by comparing the lengths of corresponding sides of the triangles. If, for example, the length of side PQ is 4 units and the length of side P'Q' is 8 units, the scale factor would be 8/4 = 2. This means that triangle P'Q' is twice the size of triangle PQR, indicating a dilation with a scale factor of 2.
length
Actually, when dilating a triangle, the angles remain unchanged while the side lengths are proportionally increased or decreased based on the scale factor of the dilation. Dilation is a transformation that enlarges or reduces a shape while maintaining its overall proportions. Therefore, the triangle's shape is preserved, but its size changes according to the dilation factor.
When you dilate a triangle with a scale factor of 2, each vertex of the triangle moves away from the center of dilation, doubling the distance from that point. As a result, the new triangle retains the same shape and angles as the original triangle but has sides that are twice as long. This means the area of the dilated triangle becomes four times larger than the original triangle's area.
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
The type of dilation that occurs with a scale factor of 14 is enlargement. Any time the scale factor is larger than 1, it is enlargement.
length
length
length
The perimeter to area ratio.
0.5
Find the coordinates of the vertices of triangle a'b'c' after triangle ABC is dilated using the given scale factor then graph triangle ABC and its dilation A (1,1) B(1,3) C(3,1) scale factor 3
2
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
The dilation of 22 with scale factor 2.5 is 55.The formula for finding a dilation with a scale factor is x' = kx (k = scale factor), so x' = 2.5(22) = 55.
No a scale factor of 1 is not a dilation because, in a dilation it must remain the same shape, which it would, but the size must either enlarge or shrink.
Center and Scale Factor....
The type of dilation that occurs with a scale factor of 14 is enlargement. Any time the scale factor is larger than 1, it is enlargement.