It is called arithmetico-geometric sequence.
I have added a link with some nice information about them.
A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.
The two kinds of sums typically refer to the arithmetic sum and the geometric sum. An arithmetic sum is the total of a sequence of numbers where each term increases by a constant difference, while a geometric sum involves a sequence where each term is multiplied by a constant ratio. Both types of sums can be expressed using specific formulas to calculate their totals efficiently.
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
base five and clock arithmetic both use whole numbers. and they both use place value to calculate.
The question is underspecified since the answer depends on the numbers on the dice. If all the numbers on both the dice are the same, there is clearly only one outcome. If the dice have 4 different numbers, then there can be 16 different outcomes. If the numbers on each die are 1,2,3 and 4 (or any four numbers in arithmetic sequence) there will be 7 outcomes.
It is a geometric sequence.
Yes, it can both arithmetic and geometric.The formula for an arithmetic sequence is: a(n)=a(1)+d(n-1)The formula for a geometric sequence is: a(n)=a(1)*r^(n-1)Now, when d is zero and r is one, a sequence is both geometric and arithmetic. This is because it becomes a(n)=a(1)1 =a(1). Note that a(n) is often written anIt can easily observed that this makes the sequence a constant.Example:a(1)=a(2)=(i) for i= 3,4,5...if a(1)=3 then for a geometric sequence a(n)=3+0(n-1)=3,3,3,3,3,3,3and the geometric sequence a(n)=3r0 =3 also so the sequence is 3,3,3,3...In fact, we could do this for any constant sequence such as 1,1,1,1,1,1,1...or e,e,e,e,e,e,e,e...In general, let k be a constant, the sequence an =a1 (r)1 (n-1)(0) with a1 =kis the constant sequence k, k, k,... and is both geometric and arithmetic.
A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.
1,2,4, and 8.
The two kinds of sums typically refer to the arithmetic sum and the geometric sum. An arithmetic sum is the total of a sequence of numbers where each term increases by a constant difference, while a geometric sum involves a sequence where each term is multiplied by a constant ratio. Both types of sums can be expressed using specific formulas to calculate their totals efficiently.
They are both adjectives. The first relates to geometry and the second to arithmetic.
In a given sequence, there are two possible means calculatable: Arithmetic Mean, and Geometric Mean. The arithmetic mean, as we all know, is calculated from the sum of all the numbers divided by how many numbers there are: Sumn/n. The Geometric sum is calculated by multiplying all the numbers within the sequence together and taking the nth root of this value: (Productn)(1/n).In a geometric series, N(i)= a(ri), the geometric mean is found to be a(rn-1), where n is the number of elements within the series. this decreases or increases exponentially depending on the r value. If r1, increasing.Limitation Of Geometric Mean are:-1) Geometric mean cannot be computed when there are both negative and positive values in a series or more observations are having zero value.2)Compared to Arithmetic Mean this average is more difficult to compute and interpret.-Iwin
you add both of the two numbers together then divide the added number by the quantities of the items, in this case Two numbers and get the result. * * * * * The above is the arithmetic mean, which is quite different from the geometric mean. To get the geometric mean of n positive numbers, you multiply (not add) them together and take the nth root of the answer.
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
you add both of the two numbers together then divide the added number by the quantities of the items, in this case Two numbers and get the result. * * * * * The above is the arithmetic mean, which is quite different from the geometric mean. To get the geometric mean of n positive numbers, you multiply (not add) them together and take the nth root of the answer.
base five and clock arithmetic both use whole numbers. and they both use place value to calculate.
AP - Arithmetic ProgressionGP - Geometric ProgressionAP:An AP series is an arithmetic progression, a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 3, 5, 7, 9, 11, 13, … is an arithmetic progression with common difference 2. If the initial term of an arithmetic progression is and the common difference of successive members is d, then the nth term of the sequence is given by:and in generalA finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression.The behavior of the arithmetic progression depends on the common difference d. If the common difference is:Positive, the members (terms) will grow towards positive infinity.Negative, the members (terms) will grow towards negative infinity.The sum of the members of a finite arithmetic progression is called an arithmetic series.Expressing the arithmetic series in two different ways:Adding both sides of the two equations, all terms involving d cancel:Dividing both sides by 2 produces a common form of the equation:An alternate form results from re-inserting the substitution: :In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the Aryabhatiya (section 2.18) .[1]So, for example, the sum of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term isGP:A GP is a geometric progression, with a constant ratio between successive terms. For example, the series is geometric, because each successive term can be obtained by multiplying the previous term by 1 / 2.Geometric series are one of the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queuing theory, and finance.