The normal distribution is a bell shaped curve. Properly normalized, the area under the curve is 1.0. Start by drawing axes. The Y axis is probability, peaking at 0.4, crossing the X axis at the mean, and the X axis is standard deviation. Draw points (-3, 0.01), (-2, 0.05), (-1, 0.25), (0, 0.4), (+1, 0.25), (+2, 0.05), (+3, 0.01). These are all approximations. Connect the dots, understanding that the curve is asymptotic to the X axis.
For a better picture, as well as an explanation, please see the related link below. This picture also shows you the percentage each area, grouped by standard deviation, or sigma, is. The normal distribution is the second picture on the right. Scroll up to see the picture, call "Normal Distribution".
Chat with our AI personalities
No, the normal distribution is strictly unimodal.
Yes. When we refer to the normal distribution, we are referring to a probability distribution. When we specify the equation of a continuous distribution, such as the normal distribution, we refer to the equation as a probability density function.
No. Normal distribution is a continuous probability.
A normal distribution can have any value for its mean and any positive value for its variance. A standard normal distribution has mean 0 and variance 1.
Everything that is normal and can can be distributed easily is known as normal distribution time.