The standard cell notation for a galvanic cell with aluminum and gold electrodes is represented as: Al(s) | Al³⁺(aq) || Au³⁺(aq) | Au(s). In this notation, the anode (aluminum) is listed on the left, and the cathode (gold) is on the right. The double vertical line (||) indicates the salt bridge or separation between the two half-cells. The state of each component (solid or aqueous) is also noted.
Type your answer here... Al(s) | Al3+(aq) Mg2+ (aq) | Mg(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Au(s) | Au+(aq) Al3+(aq) | Al(s)(-_^)
The standard cell notation for a galvanic cell made with zinc and aluminum is represented as: Zn(s) | Zn²⁺(aq) || Al³⁺(aq) | Al(s). In this notation, the anode (zinc) is listed on the left, followed by its ion in solution, then the double vertical line representing the salt bridge, and finally the cathode (aluminum) and its ion in solution. This format clearly indicates the direction of electron flow from zinc to aluminum.
Al(s) I AI3+(aq) II AI3+ (aq) I Al(s)
The standard cell notation for a galvanic cell with aluminum and gold electrodes is represented as: Al(s) | Al³⁺(aq) || Au³⁺(aq) | Au(s). In this notation, the anode (aluminum) is listed on the left, and the cathode (gold) is on the right. The double vertical line (||) indicates the salt bridge or separation between the two half-cells. The state of each component (solid or aqueous) is also noted.
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Mg(s) | Mg2+(aq) Au+(aq) | Au(s)
Mg(s) | Mg2+(aq)Au+(aq) | Au(s)
Al | Al^3+ Zn^2+ | Zn
Mg(s) | Mg2+(aq)Au+(aq) | Au(s)
Al(s) | Al3+(aq) Ni2+(aq) | Ni(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Type your answer here... Al(s) | Al3+(aq) Mg2+ (aq) | Mg(s)
Mg(s) | Mg2+(aq) Au+(aq) | Au(s)