It depends on the data. The standard deviation takes account of each value, therefore it is necessary to know the values to find the sd.
The standard deviation is a measure of how spread out the numbers are. Three points is needed to calculate a statistically valid meaningful standard deviation.
Yes, depending on the data being studied. Standard deviation can be thought of as the magnitude of the average distance between the data points and their mean.
Yes, a standard deviation of 4.34 can be correct. Standard deviation is a measure of dispersion or variability in a data set. It represents the average amount by which individual data points deviate from the mean. Therefore, a standard deviation of 4.34 simply indicates that there is some variability in the data, with data points on average deviating by 4.34 units from the mean.
A standard deviation of zero means that all the data points are the same value.
Standard deviation can only be zero if all the data points in your set are equal. If all data points are equal, there is no deviation. For example, if all the participants in a survey coincidentally were all 30 years old, then the value of age would be 30 with no deviation. Thus, there would also be no standard deviation.A data set of one point (small sample) will always have a standard deviation of zero, because the one value doesn't deviate from itself at all.!
The standard deviation is a measure of how spread out the numbers are. Three points is needed to calculate a statistically valid meaningful standard deviation.
Yes, depending on the data being studied. Standard deviation can be thought of as the magnitude of the average distance between the data points and their mean.
Yes, a standard deviation of 4.34 can be correct. Standard deviation is a measure of dispersion or variability in a data set. It represents the average amount by which individual data points deviate from the mean. Therefore, a standard deviation of 4.34 simply indicates that there is some variability in the data, with data points on average deviating by 4.34 units from the mean.
Standard deviation is the square root of the variance. Since you stated the variance is 4, the standard deviation is 2.
A standard deviation of zero means that all the data points are the same value.
Standard deviation shows how much variation there is from the "average" (mean). A low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data are spread out over a large range of values.
The mean of a distribution is a measure of central tendency, representing the average value of the data points. In this case, the mean is 2.89. The standard deviation, which measures the dispersion of data points around the mean, is missing from the question. The standard deviation provides information about the spread of data points and how closely they cluster around the mean.
The SD is 2.
A small standard deviation indicates that the data points in a dataset are close to the mean or average value. This suggests that the data is less spread out and more consistent, with less variability among the values. A small standard deviation may indicate that the data points are clustered around the mean.
Standard deviation can only be zero if all the data points in your set are equal. If all data points are equal, there is no deviation. For example, if all the participants in a survey coincidentally were all 30 years old, then the value of age would be 30 with no deviation. Thus, there would also be no standard deviation.A data set of one point (small sample) will always have a standard deviation of zero, because the one value doesn't deviate from itself at all.!
Standard deviation is a measure of the spread of data.
I am not entirely sure I understand correctly what you mean by "essence". However, the idea of finding the standard deviation is to determine, as a general tendency, whether most data points are close to the average, or whether there is a large spread in the data. The standard deviation means, more or less, "How far is the typical data point from the average?"