The nth term is 3(n+1). The twenty-third term is equal to 3 x (23 + 1) = 72
It is an arithmetic sequence if you can establish that the difference between any term in the sequence and the one before it has a constant value.
The nth term of an arithmetic sequence = a + [(n - 1) X d]
An arithmetic sequence
Arithmetic Sequence
An arithmetic sequence is defined as a sequence of numbers in which the difference between consecutive terms is constant. The number 35813 on its own does not represent an arithmetic sequence, as it is a single term. To determine if a sequence is arithmetic, you would need at least two terms to check for a constant difference.
The 90th term of the arithmetic sequence is 461
-34
It is an arithmetic sequence if you can establish that the difference between any term in the sequence and the one before it has a constant value.
The nth term of an arithmetic sequence = a + [(n - 1) X d]
An arithmetic sequence
Arithmetic Sequence
An arithmetic sequence is defined as a sequence of numbers in which the difference between consecutive terms is constant. The number 35813 on its own does not represent an arithmetic sequence, as it is a single term. To determine if a sequence is arithmetic, you would need at least two terms to check for a constant difference.
Arithmetic- the number increases by 10 every term.
One number, such as 7101316 does not define a sequence.
The one number, 491419 does not constitute a sequence!
What your tutor wants is for you to identify the factors of 21 and of 56. From this information you will find it easy to answer the question. good luck
A non-example of an arithmetic sequence is the series of numbers 2, 4, 8, 16, which is a geometric sequence. In this sequence, each term is multiplied by 2 to get to the next term, rather than adding a fixed number. Therefore, it does not have a constant difference between consecutive terms, which is a defining characteristic of an arithmetic sequence.