n is 2.
To solve, do the division:
. . . . . . . . .x2 +. 3x + (6-2n)
. . . --------------------------
x-2 | x3 + x2 - 2nx + n2
. . . . .x3 -2x2
. . . . .--------
. . . . . . . .3x2 - 2nx
. . . . . . . .3x2 - . 6x
. . . . . . . .----------
. . . . . . . . . (6-2n)x + n2
. . . . . . . . . (6-2n)x - 2(6-2n)
. . . . . . . . . ----------------------
. . . . . . . . . . . . . . . .n2 + 2(6-2n)
But this remainder is known to be 8, so:
n2 + 2(6-2n) = 8
⇒ n2 - 4n + 4 = 0
⇒ (n - 2)2 = 0
⇒ n = 2
2
6x3+29x2-40x-42 divided by 6x+5 Quotient: x2+4x-10 Remainder: 8
5
1
1
4
2
6x3+29x2-40x-42 divided by 6x+5 Quotient: x2+4x-10 Remainder: 8
The quotient works out as: x^2+2x+4 and there is a remainder of -3
5
1
1
6
-6
4x cubed y cubed z divided by x negative squared y negative 1 z sqaured = 4
X2 (X squared)
yes