answersLogoWhite

0

There is no equation but an expression. An expression cannot refer to a parabola. Please check your information and resubmit the question.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the Definition of vertex of a parabola?

the point in which the parabola cannot go any higher or lower in a coordinate plane


Where is the vertex coordinate of the parabola y equals 24 -6x -3x squared when plotted on the Cartesian plane?

The vertex coordinate point of the vertex of the parabola y = 24-6x-3x^2 when plotted on the Cartesian plane is at (-1, 27) which can also be found by completing the square.


What is the highest or lowest point on the graph of a quadratic function?

The highest or lowest point on the graph of a quadratic function, known as the vertex, depends on the direction of the parabola. If the parabola opens upwards (the coefficient of the (x^2) term is positive), the vertex represents the lowest point. Conversely, if the parabola opens downwards (the coefficient is negative), the vertex is the highest point. The vertex can be found using the formula (x = -\frac{b}{2a}) to find the (x)-coordinate, where (a) and (b) are the coefficients from the quadratic equation (ax^2 + bx + c).


What could be the equation of a parabola with its vertex at (-36).?

The equation of a parabola with its vertex at the point (-36, k) can be expressed in the vertex form as ( y = a(x + 36)^2 + k ), where ( a ) determines the direction and width of the parabola. If the vertex is at (-36), the x-coordinate is fixed, but the y-coordinate ( k ) can vary depending on the specific position of the vertex. If you'd like a specific example, assuming ( k = 0 ) and ( a = 1 ), the equation would be ( y = (x + 36)^2 ).


How do you find the vertexof a parabola?

To find the vertex of a parabola given its equation in standard form (y = ax^2 + bx + c), you can use the formula for the x-coordinate of the vertex: (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. Thus, the vertex can be expressed as the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))). For parabolas in vertex form (y = a(x-h)^2 + k), the vertex is simply the point ((h, k)).

Related Questions

What is the Definition of vertex of a parabola?

the point in which the parabola cannot go any higher or lower in a coordinate plane


What is minimum point?

This is the coordinate of the vertex for a parabola that opens up, defined by a positive value of x^2.


Where is the vertex coordinate of the parabola y equals 24 -6x -3x squared when plotted on the Cartesian plane?

The vertex coordinate point of the vertex of the parabola y = 24-6x-3x^2 when plotted on the Cartesian plane is at (-1, 27) which can also be found by completing the square.


What is the highest or lowest point on the graph of a quadratic function?

The highest or lowest point on the graph of a quadratic function, known as the vertex, depends on the direction of the parabola. If the parabola opens upwards (the coefficient of the (x^2) term is positive), the vertex represents the lowest point. Conversely, if the parabola opens downwards (the coefficient is negative), the vertex is the highest point. The vertex can be found using the formula (x = -\frac{b}{2a}) to find the (x)-coordinate, where (a) and (b) are the coefficients from the quadratic equation (ax^2 + bx + c).


What the the vertex of a parabola?

The vertex would be the point where both sides of the parabola meet.


What could be the equation of a parabola with its vertex at (-36).?

The equation of a parabola with its vertex at the point (-36, k) can be expressed in the vertex form as ( y = a(x + 36)^2 + k ), where ( a ) determines the direction and width of the parabola. If the vertex is at (-36), the x-coordinate is fixed, but the y-coordinate ( k ) can vary depending on the specific position of the vertex. If you'd like a specific example, assuming ( k = 0 ) and ( a = 1 ), the equation would be ( y = (x + 36)^2 ).


The is the extreme point of a parabola and is located halfway between the focus and directrix?

The vertex -- the closest point on the parabola to the directrix.


What is the lowest or highest point in a parabola?

A vertex is the highest or lowest point in a parabola.


Where is the point on the parabola for the maximum area?

The point on the parabola where the maximum area occurs is at the vertex of the parabola. This is because the vertex represents the maximum or minimum point of a parabolic function.


How do you find the vertexof a parabola?

To find the vertex of a parabola given its equation in standard form (y = ax^2 + bx + c), you can use the formula for the x-coordinate of the vertex: (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. Thus, the vertex can be expressed as the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))). For parabolas in vertex form (y = a(x-h)^2 + k), the vertex is simply the point ((h, k)).


What is the point directly above the focus?

The point directly above the focus is the vertex of the parabola. The focus is a specific point on the axis of symmetry of the parabola, and the vertex is the point on the parabola that is closest to the focus.


Parabola is the point at which the parabola is at its lowest or highest point?

A parabola is NOT a point, it is the whole curve.