It is difficult to say because of uncertainty as to what xx-4 represents. x2 - 4 = 4 gives x2 = 8 so x = ± 2*sqrt(2)
To determine the value of a function when the input equals zero, you need to evaluate the function at that specific point by substituting zero into the function's equation. For example, if the function is defined as ( f(x) = 2x + 3 ), then ( f(0) = 2(0) + 3 = 3 ). The output will vary depending on the specific function being used.
The zero of a function is a point where the function evaluates to zero. If you express "y" as a function of "x", i.e. y = f(x), then for a zero of the function, the y-coordinate is 0. In other words, the corresponding point is on the x-axis.
a zero matrix,zero of a function and a zero slope
zero
6
The "root" of a function is also called the "zero" of a function. This is where the function equals zero. The function y=4-x2 has roots at x=2 and x=-2 The function y=4-x2 has zeroes at x=2 and x=-2 Those are equivalent statements.
the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.
A zero of a function is a point at which the value of the function is zero. If you graph the function, it is a point at which the graph touches the x-axis.
It is difficult to say because of uncertainty as to what xx-4 represents. x2 - 4 = 4 gives x2 = 8 so x = ± 2*sqrt(2)
The domain of a function encompasses all of the possible inputs of that function. On a Cartesian graph, this would be the x axis. For example, the function y = 2x has a domain of all values of x. The function y = x/2x has a domain of all values except zero, because 2 times zero is zero, which makes the function unsolvable.
The "zero" or "root" of such a function - or of any other function - is the answer to the question: "What value must the variable 'x' have, to let the function have a value of zero?" Or any other variable, depending how the function is defined.
Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.
The zero of a function is a point where the function evaluates to zero. If you express "y" as a function of "x", i.e. y = f(x), then for a zero of the function, the y-coordinate is 0. In other words, the corresponding point is on the x-axis.
If you set a function equal to zero and solve for x, then you are finding where the function crosses the x-axis.
It tells you where the function intersects the x-axis. In f(x)=x^2-4, 2 is a zero because when x=2, f(x)=0.
The function is not defined at any values at which the denominator is zero.