a and b must face in opposite directions.
7
69 degrees
A vector is a quantity with magnitude and direction. Since force has magnitude and direction, it is a vector
Depends on the situation. Vector A x Vector B= 0 when the sine of the angle between them is 0 Vector A . Vector B= 0 when the cosine of the angle between them is 0 Vector A + Vector B= 0 when Vectors A and B have equal magnitude but opposite direction.
2pi/3 radian or equivalent 120 degree
In a given coordinate system, the components of a vector represent its magnitude and direction along each axis. Unit vectors are vectors with a magnitude of 1 that point along each axis. The relationship between the components of a vector and the unit vectors is that the components of a vector can be expressed as a combination of the unit vectors multiplied by their respective magnitudes.
No, the statement is incorrect. The sum of two vectors of equal magnitude will not equal the magnitude of either vector. The sum of two vectors of equal magnitude will result in a new vector that is larger than the original vectors due to vector addition. The magnitude of the difference between the two vectors will be smaller than the magnitude of either vector.
Yes, the magnitude of the difference between two vectors can be greater than the magnitude of either vector. This can occur when the vectors are in opposite directions or have different magnitudes such that the resulting difference vector is longer than either of the original vectors.
It has both velocity and direction. A vector has direction and magnitude.
No, the resultant of two equal vectors will have a magnitude that is not equal to the magnitude of the original vectors. When two vectors are added together, the resulting vector will have a magnitude that depends on the angle between the two vectors.
That fact alone doesn't tell you much about the original two vectors. It only says that (magnitude of vector-#1) times (magnitude of vector-#2) times (cosine of the angle between them) = 1. You still don't know the magnitude of either vector, or the angle between them.
7
Displacement is a vector quantity. Hence, while finding resultant vector we need to use vector algebra and the properties of vectors. If the 2 displacement vectore are in opposite directions,it means that the angle between them is 180degrees and hence we can directly subtract them.
A unit vector is a vector with a magnitude of 1, while a unit basis vector is a vector that is part of a set of vectors that form a basis for a vector space and has a magnitude of 1.
When two vectors are in opposite directions, their resultant is the difference between their magnitudes, with the direction of the larger vector. This means the resultant vector points in the direction of the larger vector and its magnitude is the difference between the magnitudes of the two vectors.
The angle between two vectors whose magnitudes add up to be equal to the magnitude of the resultant vector will be 120 degrees. This is known as the "120-degree rule" when adding two vectors of equal magnitude to get a resultant of equal magnitude.
69 degrees