The sequence appears to be made up of the squares of consecutive integers: (1^2 = 1), (4^2 = 16), and (10^2 = 100). The missing number corresponds to (7^2), which is (49). Therefore, the missing number in the sequence is 49.
49
The sequence consists of perfect squares: (3^2 = 9), (4^2 = 16), (5^2 = 25), and (7^2 = 49). The missing number corresponds to (6^2), which is 36. Therefore, the missing number in the sequence is 36.
To find the missing number in the sequence 16, 4, 12, 36, 9, 27, 44, 11, we can look for a pattern. The first set of numbers appears to alternate between two sequences: the first sequence (16, 12, 9, 44) and the second sequence (4, 36, 27, 11). Following this pattern, the missing number, which follows the last number in the second sequence (11), should be 33. Thus, the missing number is 33.
You could put 49 in between the 16 and the 100.
c) 17
49
The sequence consists of perfect squares: (3^2 = 9), (4^2 = 16), (5^2 = 25), and (7^2 = 49). The missing number corresponds to (6^2), which is 36. Therefore, the missing number in the sequence is 36.
256 (each number is the square of the preceding number)
You could put 49 in between the 16 and the 100.
16
c) 17
9 (between 8 and 16).
22
The missing numbers are 9 & 49.The sequence is 1x1, 2x2, 3x3, 4x4, 5x5, 6x6, 7x7& 8x8.
While there are not enough numbers to fully clarify the nth term of the sequence, according to the sequence so far it appears that the nth term is equal to n4. Therefore, the next number will equal 44 = 256
The solution depends on how many numbers are missing and where they were. If there is only one, If it is between 4 and -5 then -0.5 If it is between -5 and -10 then -8 If it is between -10 and -16 then -13 Of course, the answer would be different if there were more than one number missing.
It is a number sequence.