If you mean: y = x^2+4x+3 and y = 2x+6
Then the solution is: x = 1 or x = -3
A system of linear equations is consistent if there is only one solution for the system. Thus, if you see that the drawn lines intersect, you can say that the system is consistent, and the point of intersection is the only solution for the system. A system of linear equations is inconsistent if it does not have any solution. Thus, if you see that the drawn lines are parallel, you can say that the system is inconsistent, and there is not any solution for the system.
The solution of the system of linear equations ( x = 0 ) and ( y = 0 ) is the single point (0, 0) in the Cartesian coordinate system. This point represents the intersection of the two equations, where both variables are equal to zero. Thus, the only solution is the origin.
If the lines intersect, then the intersection point is the solution of the system. If the lines coincide, then there are infinite number of the solutions for the system. If the lines are parallel, there is no solution for the system.
A linear system just means it's a line. A solution is just a point that is on that line. It means that the two coordinates of the point solve the equation that makes the line. Alternatively, it could mean there are 2 (or more) lines and the point is where they intersect; meaning its coordinates solve both (or all) equations that make the lines.
The intersection of two lines in a graph of a system of linear equations represents the solution because it is the point where both equations are satisfied simultaneously. At this point, the x and y coordinates meet the conditions set by both equations, meaning that the values of x and y make both equations true. Hence, the intersection point is the unique solution to the system, assuming the lines are not parallel or coincident.
The coordinates of the point of intersection represents the solution to the linear equations.
yes it is possible for a system of two linear inequalities to have a single point as a solution.
NO! A linear system can only have one solution (the lines intersect at one point), no solution (the lines are parallel), and infinitely many solutions (the lines are equivalent).
A system of linear equations determines a line on the xy-plane. The solution to a linear set must satisfy all equations. The solution set is the intersection of x and y, and is either a line, a single point, or the empty set.
A system of linear equations is consistent if there is only one solution for the system. Thus, if you see that the drawn lines intersect, you can say that the system is consistent, and the point of intersection is the only solution for the system. A system of linear equations is inconsistent if it does not have any solution. Thus, if you see that the drawn lines are parallel, you can say that the system is inconsistent, and there is not any solution for the system.
The solution of the system of linear equations ( x = 0 ) and ( y = 0 ) is the single point (0, 0) in the Cartesian coordinate system. This point represents the intersection of the two equations, where both variables are equal to zero. Thus, the only solution is the origin.
Two or more straight lines meeting at one point.
If the lines intersect, then the intersection point is the solution of the system. If the lines coincide, then there are infinite number of the solutions for the system. If the lines are parallel, there is no solution for the system.
A linear system just means it's a line. A solution is just a point that is on that line. It means that the two coordinates of the point solve the equation that makes the line. Alternatively, it could mean there are 2 (or more) lines and the point is where they intersect; meaning its coordinates solve both (or all) equations that make the lines.
The intersection of two lines in a graph of a system of linear equations represents the solution because it is the point where both equations are satisfied simultaneously. At this point, the x and y coordinates meet the conditions set by both equations, meaning that the values of x and y make both equations true. Hence, the intersection point is the unique solution to the system, assuming the lines are not parallel or coincident.
2 for linear (powers of 1), 3 for quadratic (powers of 2), etc
It is not possible to tell. The lines could intersect, in pairs, at several different points giving no solution. A much less likely outcome is that they all intersect at a single point: the unique solution to the system.